Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants

Abstract

Cancer progression is often associated with the accumulation of gross chromosomal rearrangements (GCRs), such as translocations, deletion of a chromosome arm, interstitial deletions or inversions1,2,3. In many instances, GCRs inactivate tumour-suppressor genes or generate novel fusion proteins that initiate carcinogenesis3,4. The mechanism underlying GCR formation appears to involve interactions between DNA sequences of little or no homology5,6,7,8. We previously demonstrated that mutations in the gene encoding the largest subunit of the Saccharomyces cerevisiae single-stranded DNA binding protein (RFA1) increase microhomology-mediated GCR formation8. To further our understanding of GCR formation, we have developed a novel mutator assay in S. cerevisiae that allows specific detection of such events. In this assay, the rate of GCR formation was increased 600–5,000-fold by mutations in RFA1, RAD27, MRE11, XRS2 and RAD50, but was minimally affected by mutations in RAD51, RAD54, RAD57, YKU70, YKU80, LIG4 and POL30. Genetic analysis of these mutants suggested that at least three distinct pathways can suppress GCRs: two that suppress microhomology-mediated GCRs (RFA1 and RAD27) and one that suppresses non-homology–mediated GCRs (RAD50/MRE11/XRS2).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assay for gross chromosomal rearrangements.
Figure 2: Proposed mechanisms for generation and suppression of GCRs.

Similar content being viewed by others

References

  1. Shikano, T., Arioka, H., Kobayashi, R., Naito, H. & Ishikawa, Y. Jumping translocations of 1q in Burkitt lymphoma and acute nonlymphocytic leukemia. Cancer Genet. Cytogenet. 71, 22–26 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  2. Mitelman, F. Catalog of Chromosome Aberration in Cancer (Wiley Liss, New York, 1991).

  3. Gauwerky, C.E. & Croce, C.M. Chromosomal translocations in leukaemia. Semin. Cancer Biol. 4, 333– 340 (1993).

    CAS  PubMed  Google Scholar 

  4. Barr, F.G. Translocations, cancer and the puzzle of specificity. Nature Genet. 19, 121–124 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  5. Woods-Samuels, P., Kazazian, H.H. & Antonarakis, S.E. Nonhomologous recombination in the human genome: deletions in the human factor VIII gene. Genomics 10, 94–101 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Luzi, P., Rafi, M.A. & Wenger, D.A. Characterization of the large deletion in the GALC gene found in patients with Krabbe disease. Hum. Mol. Genet. 4, 2335–2338 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Gilman, J.G. The 12.6 kilobase DNA deletion in Dutch β zero-thalassaemia. Br. J. Haematol. 67, 369–372 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, C., Umezu, K. & Kolodner, R.D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2, 9– 22 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Wold, M.S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61–92 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Umezu, K., Sugawara, N., Chen, C., Haber, J.E. & Kolodner, R.D. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148, 989–1005 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Merrill, B.J. & Holm, C. The RAD52 recombinational repair pathway is essential in pol30 (PCNA) mutants that accumulate small single-stranded DNA fragments during DNA synthesis. Genetics 148, 611–624 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lieber, M.R. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination, and repair. Bioessays 19, 233–240 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Tishkoff, D.X., Filosi, N., Gaida, G.M. & Kolodner, R.D. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88, 253– 263 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Haber, J. The many interfaces of Mre11. Cell 95, 583 –586 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Tsukamoto, Y., Kato, J. & Ikeda, H. Budding yeast Rad50, Mre11, Xrs2, and Hdf1, but not Rad 52, are involved in the formation of deletions on a dicentric plasmid. Mol. Gen. Genet. 255, 543–547 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  16. Tsukamoto, Y., Kato, J. & Ikeda, H. Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. Genetics 142, 383–391 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Moore, J.K. & Haber, J.E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2164–2173 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malkova, A., Ivanov, E.L. & Haber, J.E. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc. Natl Acad. Sci. USA 93, 7131– 7136 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bosco, G. & Haber, J.E. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150, 1037–1047 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ninio, J. Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates. Genetics 129, 957–962 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Carney, J.P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Matsuura, S. et al. Positional cloning of the gene for Nijmegen breakage syndrome. Nature Genet. 19, 179– 181 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Chrzanowska, K.H. et al. Eleven Polish patients with microcephaly, immunodeficiency, and chromosomal instability: the Nijmegen breakage syndrome. Am. J. Med. Genet. 57, 462–471 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Lea, D.E. & Coulson, C.A. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49, 264–285 (1948).

    Article  Google Scholar 

  25. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Maniar, H.S., Wilson, R. & Brill, S.J. Roles of replication protein-A subunits 2 and 3 in DNA replication fork movement in Saccharomyces cerevisiae. Genetics 145, 891–902 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Amin, N.S. & Holm, C.H. In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. Genetics 144, 479–493 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schulz, V.P. & Zakian, V.A. The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145–155 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  29. Kramer, K.M. & Haber, J.E. New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats. Genes Dev. 7, 2345–2356 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Nakagawa, K.J. Myung and A. Datta for discussions and comments, and J. Weger and J. Green for performing DNA sequencing. This work was supported by NIH grants GM26017 and GM50006 to R.D.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Kolodner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Kolodner, R. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23, 81–85 (1999). https://doi.org/10.1038/12687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing