Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2

An Erratum to this article was published on 01 January 2002

Abstract

Variation of flowering time is found in the natural populations of many plant species. The underlying genetic variation, mostly of a quantitative nature, is presumed to reflect adaptations to different environments contributing to reproductive success. Analysis of natural variation for flowering time in Arabidopsis thaliana has identified several quantitative trait loci (QTL)1, which have yet to be characterized at the molecular level. A major environmental factor that determines flowering time is photoperiod or day length, the length of the light period, which changes across the year differently with geographical latitude2. We identified the EDI locus as a QTL partly accounting for the difference in flowering response to the photoperiod between two Arabidopsis accessions: the laboratory strain Landsberg erecta (Ler), originating in Northern Europe, and Cvi, collected in the tropical Cape Verde Islands3. Positional cloning of the EDI QTL showed it to be a novel allele of CRY2, encoding the blue-light photoreceptor cryptochrome-2 that has previously been shown to promote flowering in long-day (LD) photoperiods4. We show that the unique EDI flowering phenotype results from a single amino-acid substitution that reduces the light-induced downregulation of CRY2 in plants grown under short photoperiods, leading to early flowering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map-based isolation of the Arabidopsis EDI/CRY2 locus.
Figure 2: Early flowering and day-length insensitivity of CRY2-Cvi.
Figure 3: Comparison of CRY2 protein sequences.
Figure 4: Analysis of CRY2 expression.
Figure 5: Blue-light effect on hypocotyl elongation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Koornneef, M., Alonso-Blanco, C., Peeters, A.J.M. & Soppe, W. Genetic control of flowering time in Arabidopsis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 345–370 (1998).

    Article  CAS  Google Scholar 

  2. Thomas, B. & Vince-Prue, D. Photoperiodism in Plants (Academic Press, New York, 1997).

    Google Scholar 

  3. Alonso-Blanco, C., El-Assal, S.E-D., Coupland, G. & Koornneef, M. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Island ecotypes of Arabidopsis thaliana. Genetics 149, 749–764 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo, H., Yang, H., Mockler, T.C. & Lin, C. Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360–1363 (1998).

    Article  CAS  Google Scholar 

  5. Karlsson, B.H., Sills, G.R. & Nienhuis, J. Effect of photoperiod and vernalization on the number of leaves at flowering in 32 Arabidopsis thaliana (Brassicaceae) ecotypes. Am. J. Bot. 80, 646–648 (1993).

    Article  Google Scholar 

  6. Koornneef, M., Hanhart, C.J. & van der Veen, J.H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57–66 (1991).

    Article  CAS  Google Scholar 

  7. Jansen, R.C., Van Ooijen, J.W., Stam, P., Lister, C. & Dean, C. Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor. Appl. Genet. 91, 33–37 (1995).

    Article  CAS  Google Scholar 

  8. Neff, M.M., Neff, J.D., Chory, J. & Pepper, E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387–392 (1998).

    Article  CAS  Google Scholar 

  9. Lin, C. et al. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl Acad. Sci. USA 95, 2686–2690 (1998).

    Article  CAS  Google Scholar 

  10. Ahmad, M., Jarillo, J.A. & Cashmore, A.R. Chimeric protein between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 10, 197–207 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernier, G., Havelange, A., Houssa, C., Petitjean, A. & Lejeune, P. Physiological signals that induce flowering. Plant Cell 5, 1147–1155 (1993).

    Article  CAS  Google Scholar 

  12. Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. & Coen, E. Inflorescence commitment and architecture in Arabidopsis. Science 275, 80–83 (1997).

    Article  CAS  Google Scholar 

  13. Mockler, T.C., Guo, H., Yang, H., Duong, H. & Lin, C. Antagonistic action of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126, 2073–2082 (1999).

    CAS  PubMed  Google Scholar 

  14. Mizoguchi, T. & Coupland, G. ZEITLUPE and FKF1: novel connections between flowering time and circadian clock control. Trends Plant Sci. 5, 409–411 (2000).

    Article  CAS  Google Scholar 

  15. Devlin, P.F. & Kay, S.A. Cryptochromes are required for phytochrome signalling to the circadian clock but not for rhythmicity. Plant Cell 12, 2499–2509 (2000).

    Article  CAS  Google Scholar 

  16. Swarup, K. et al. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J. 20, 67–77 (1999).

    Article  CAS  Google Scholar 

  17. Suarez-Lopez, P. et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1120 (2001).

    Article  CAS  Google Scholar 

  18. Johanson, U. et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344–347 (2000).

    Article  CAS  Google Scholar 

  19. Michaels, S.D. & Amasino, R.M. Flowering Locus C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956 (1999).

    Article  CAS  Google Scholar 

  20. Yano, M. et al. Hd1, a major photoperiod senstivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2483 (2000).

    Article  CAS  Google Scholar 

  21. Takahashi, Y., Shomura, A., Sasaki, T. & Yano, M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc. Natl Acad. Sci. USA 98, 7922–7927 (2001).

    Article  CAS  Google Scholar 

  22. Wang, R.L., Stec, A., Hey, J., Lukens, L. & Doebley, J. The limits of selection during maize domestication. Nature 398, 236–239 (1999).

    Article  CAS  Google Scholar 

  23. Frary, A. et al. Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88 (2000).

    Article  CAS  Google Scholar 

  24. Fridman, E., Pleban, T. & Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl Acad. Sci. USA 97, 4718–4723 (2000).

    Article  CAS  Google Scholar 

  25. Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., Gershenzon, J. & Mitchell-Olds, T. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13, 681–693 (2001).

    Article  CAS  Google Scholar 

  26. Maloof, J.N. et al. Natural variation in light sensitivity of Arabidopsis. Nature Genet. 29, 441–446 (2001).

    Article  CAS  Google Scholar 

  27. Koornneef, M., Hanhart, C., van Loenen-Martinet, P. & Blankestijn-de Vries, H. The effect of daylength on the transition to flowering in phytochrome-deficient, late-flowering and double mutants of Arabidopsis thaliana. Physiol. Planta 95, 260–266 (1995).

    Article  CAS  Google Scholar 

  28. Van Tuinen, A., Kerckhoffs, L.H.J., Nagatani, A., Kendrick, R.E. & Koornneef, M. Far-red light-insensitive, phytochrome A–deficient mutants of tomato. Mol. Gen. Genet. 246, 133–141 (1995).

    Article  CAS  Google Scholar 

  29. Peters, J.L., Schreuder, M.E.L., Verduin, S.J.W. & Kendrick, R.E. Physiological characterization of a high-pigment mutant of tomato. Photochem. Photobiol. 56, 75–82 (1992).

    Article  CAS  Google Scholar 

  30. Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. 316, 1194–1199 (1993).

    CAS  Google Scholar 

  31. Lazo, G.R., Stein, P.A. & Ludwig, R.A. A DNA transformation–competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9, 963–967 (1991).

    Article  CAS  Google Scholar 

  32. Chou, I.T. & Gasser, C.S. Characterization of the cyclophilin gene family of Arabidopsis thaliana and phylogenetic analysis of known cyclophilin protein. Plant Mol. Biol. 35, 873–892 (1997).

    Article  CAS  Google Scholar 

  33. Guan, K. & Dixon, J.G. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion protein with glutathione S-transferase. Anal. Biochem. 192, 262–267 (1991).

    Article  CAS  Google Scholar 

  34. Sessa, G., Yang, C.-X., Raz, V., Eyal, Y. & Fluhr, R. Dark induction and subcellular localization of the pathogenesis related PRB-1b protein. Plant Mol. Biol. 28, 537–547 (1995).

    Article  CAS  Google Scholar 

  35. Raz, V. & Ecker, J.R. Regulation of differential growth in the apical hook of Arabidopsis. Development 126, 3661–3668 (1999).

    CAS  PubMed  Google Scholar 

  36. Cashmore, A.R., Jarillo, J.A., Wu, Y.J. & Liu, D. Cryptochrome: blue light receptors for plants and animals. Science 284, 760–765 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank A. Miller for providing transgenic seeds expressing the CAB:LUC constructs, J. Jarillo for providing CRY2 cDNA, W. Soppe for his continuous help and support, J. Weller for his assistance in the blue-light experiments and for critical reading of the manuscript, H.H. Offenberg and S. van der Krol for their assistance in developing anti-CRY2 and in the luciferase measurements, respectively, and M. Schreuder and C. Hanhart for help with the light cabinets and greenhouse work. This work was supported by a predoctoral fellowship from the government of Egypt to S.E.-D.E.-A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Koornneef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Din El-Assal, S., Alonso-Blanco, C., Peeters, A. et al. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29, 435–440 (2001). https://doi.org/10.1038/ng767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing