Skip to main content
Log in

Kinetic performance of open-tubular and packed columns in LC using the same stationary phase: Immobilized polymethyloctadecylsiloxane

  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

For the first time a direct comparison of the kinetic performance of narrow-bore (5–15 μm I.D.) opentubular columns (OTCs) and conventional packed columns in LC was carried out with stationary and mobile phases with identical chemical composition. The polymeric stationary phase was a polymethyloctadecylsiloxane (PMSC18) and the columns were evaluated in reversed-phase LC. In the open-tubular columns oncolumn detection was performed with laser-induced fluorescence. The observed column performance is presented in various ways, to take account of the basic differences of OTCs and packed columns. Experimental data was compared with theoretical models by use of a curve fitting procedure. The static coating method generates OTCs that perform close to theoretical predictions, and the packed columns were outperformed by the OTCs with regard to efficiency. A 6 m long and 6.3 μm I.D. OTC showed a minimum reduced plate height, hmin. of 0.5 at k′=0.27, which equals 1 900 000 theoretical plates. Also, it was established that the open-tubular columns provide higher resolution in a given analysis time. However, the importance of sufficient retention in OTCs is once again substantiated. Peak capacity plots illustrate that the k′ “window” should be optimized in order to reach maximum resolution (k′ 0–2 for OTCs and 0–5 for packed columns).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Knox, M. T. Gilbert, J. Chromatogr.186, 405 (1979).

    Google Scholar 

  2. I. Halasz, J. Chromatogr.173, 229 (1979).

    Google Scholar 

  3. F. J. Yang, J. Chromatogr. Sci.20, 241 (1982).

    Google Scholar 

  4. J. W. Jorgenson, E. J. Guthrie, J. Chromatogr.255, 335 (1983).

    Google Scholar 

  5. P. Kucera, G. Guiochon, J. Chromatogr.283, 1 (1984).

    Google Scholar 

  6. O. van Berkel, H. Poppe, J. C. Kraak, Chromatographia24, 739 (1987).

    Google Scholar 

  7. A. Farbrot, S. Folestad, M. Larsson, HRC & CC9, 117 (1986).

    Google Scholar 

  8. S. Folestad, B. Josefsson, M. Larsson, J. Chromatogr.391, 347 (1987).

    Google Scholar 

  9. S. Folestad, M. Larsson, J. Chromatogr.394, 455 (1987).

    Google Scholar 

  10. P. P. H. Tock, G. Stegeman, R. Peerboom, H. Poppe, J. C. Kraak, K. K. Unger, Chromatographia24, 617 (1987).

    Google Scholar 

  11. P. R. Dluzneski, J. W. Jorgenson, HRC & CC11, 332 (1988).

    Google Scholar 

  12. P. P. H. Tock, C. Boshoven, H. Poppe, J. C. Kraak, K. K. Unger, J. Chromatogr.477, 95 (1989).

    Google Scholar 

  13. O. van Berkel-Geldof, J. C. Kraak, H. Poppe, J. Chromatogr.499, 345 (1990).

    Google Scholar 

  14. S. Eguchi, J. G. Kloosterboer, C. P. G. Zegers, P. J. Schoenmakers, P. P. H. Tock, J. C. Kraak, H. Poppe, J. Chromatogr.516, 301 (1990).

    Google Scholar 

  15. K. Göhlin, M. Larsson, J. Microcol. Sep.3, 547 (1991).

    Google Scholar 

  16. R. L. St. Claire III, D. M. Dohmeier, J. W. Jorgenson, J. Microcol. Sep.3, 303 (1991).

    Google Scholar 

  17. S. R. Müller, W. Simon, H. M. Widmer, K. Grolimund, G. Schomburg, P. Kolla, Anal. Chem.61, 2747 (1989).

    Google Scholar 

  18. Z. Fröbe, K. Richon, W. Simon, Chromatographia17, 467 (1983).

    Google Scholar 

  19. R. L. St. Claire III, J. W. Jorgenson, J. Chromatogr. Sci.23, 186 (1985).

    Google Scholar 

  20. S. Müller, D. Scheidegger, C. Haber, W. Simon, HRC & CC14, 174 (1991).

    Google Scholar 

  21. T. Tsuda, G. Nakagawa, J. Chromatogr.268, 369 (1983).

    Google Scholar 

  22. X. Xi, E. S. Yeung, Anal. Chem.62, 1580 (1990).

    Google Scholar 

  23. R. Swart, J. C. Kraak, H. Poppe, J. Chromatogr.670, 25 (1994).

    Google Scholar 

  24. R. Tijssen, J. P. A. Bleumer, A. L. C. Smit, M. E. van Kreveld, J. Chromatogr.218, 137 (1981).

    Google Scholar 

  25. M. Krejci, K. Tesarik, M. Rusek, J. Pajurek, J. Chromatogr.218, 167 (1981).

    Google Scholar 

  26. T. Tsuda, K. Hibi, T. Nakanishi, T. Takeuchi, D. Ishii, J. Chromatogr.158, 227 (1978).

    Google Scholar 

  27. B. H. Escoffier, C. E. Parker, T. C. Mester, J. S. M. Dewit, F. T. Corbin, J. W. Jorgenson, K. B. Tomer, J. Chromatogr.474, 301 (1989).

    Google Scholar 

  28. P. P. H. Tock, P. P. E. Duijsters, J. C. Kraak, H. Poppe, J. Chromatogr.506, 185 (1990).

    Google Scholar 

  29. H. Engelhardt, H. Löw, W. Eberhardt, M. Mauss, Chromatographia27, 535 (1989).

    Google Scholar 

  30. G. Schomburg, LC-GC6, 36 (1988).

    Google Scholar 

  31. G. Schomburg, Trends Anal. Chem.10, 163 (1991).

    Google Scholar 

  32. M. J. J. Hetem, J. W. de Haan, H. A. Claessens, C. A. Cramers, A. Deege, G. Schomburg, J. Chromatogr.540, 53 (1991).

    Google Scholar 

  33. U. Bien-Vogelsang, A. Deege, H. Figge, J. Köhler, G. Schomburg, Chromatographia19, 170 (1984).

    Google Scholar 

  34. K. Göhlin, M. Larsson, J. Chromatogr.645, 41 (1993).

    Google Scholar 

  35. Y. Ruan, G. Feenstra, J. C. Kraak, H. Poppe, Chromatographia35, 597 (1993).

    Google Scholar 

  36. A. L. Crego, J. C. Diez-Masa, M. V. Dabrio, Anal. Chem.65, 1615 (1993).

    Google Scholar 

  37. H. Figge, A. Deege, J. Köhler, G. Schomburg, J. Chromatogr.351, 393 (1986).

    Google Scholar 

  38. M. Ghijs, P. Sandra, J. Microcol. Sep.3, 443 (1991).

    Google Scholar 

  39. E. J. Guthrie, J. W. Jorgenson, L. A. Knecht, S. G. Bush, HRC & CC6, 566 (1983).

    Google Scholar 

  40. S. Folestad, L. Johnson, B. Josefsson, B. Galle, Anal. Chem.54, 925 (1982).

    Google Scholar 

  41. S. Folestad, B. Josefsson, B. Galle, J. Chromatogr. Sci.23, 273 (1985).

    Google Scholar 

  42. L. R. Snyder, P. E. Antle, LC Mag.3, 98 (1985).

    Google Scholar 

  43. P. A. Bristow, J. H. Knox, Chromatographia10, 279 (1977).

    Google Scholar 

  44. L. S. Ettre, E. W. March, J. Chromatogr.91, 5 (1974).

    Google Scholar 

  45. J. H. Knox, H. P. Scott, J. Chromatogr.282, 297 (1983).

    Google Scholar 

  46. R. W. Stout, J. J. deStefano, L. R. Snyder, J. Chromatogr.282, 263 (1983).

    Google Scholar 

  47. J. M. Davis, J. C. Giddings, Anal. Chem.55, 418 (1983).

    Google Scholar 

  48. J. C. Giddings, Anal. Chem.39, 1027 (1967).

    Google Scholar 

  49. M. Larsson, Doctoral Thesis, University of Göteborg, 1986.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göhlin, K., Buskhe, A. & Larsson, M. Kinetic performance of open-tubular and packed columns in LC using the same stationary phase: Immobilized polymethyloctadecylsiloxane. Chromatographia 39, 729–739 (1994). https://doi.org/10.1007/BF02274590

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02274590

Key Words

Navigation