Skip to main content
Log in

The efficiency of open tubular gas chromatographic columns

Part. I. The mean specific plate number — a new parameter for assessing column efficiency

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

A new parameter, the mean specific plate number, is proposed for assessing the efficiency of support coated open tubular (SCOT) and wall coated open tubular (WCOT) columns and for comparing the efficiency of different open tubular columns. It has the advantage over most previously used parameters in that it has only a small dependence on the partition ratio and it allows for the column diameter.

A graphical presentation is given of the maximum theoretical mean specific plate number as a function of the partition ratio for SCOT columns having a range of relative porous layer thicknesses and for WCOT columns with a range of phase ratios.

This presentation permits ready visual comparison of the potential efficiency of different columns and enables a simple evaluation of the percentage utilization of theoretical efficiency from experimentally determined values of the maximum mean specific plate number. For a given column the percentage utilization of theoretical efficiency at optimum average gas velocity and that at optimum practical gas velocity or at a higher average gas velocity are shown to be equal provided that corrections for column pressure drop are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

Relative porous layer thickness, d/rg

B:

Longitudinal gaseous diffusion term

B0 :

Specific permeability

Cg :

Term expressing resistance to mass transfer in gas phase

C1 :

Term expressing resistance to mass transfer in liquid phase

d:

Average thickness of porous layer

df :

Average liquid phase film thickness in WCOT column

Dg0:

Diffusion coefficient of solute in gas phase at column temperature and at column outlet pressure

D1 :

Diffusion coefficient of solute in liquid phase at column temperature

f:

Giddings gas compressibility factor 9(P4−1)(P2−1)/8(P3−1)2

F:

Ratio of liquid phase surface area in SCOT column to that in equivalent WCOT column

G:

Dimensionless number in theoretical equations for Cg

h :

Reduced plate height, h/2rg

h, HETP:

Height equivalent to theoretical plate

H, HEETP:

Height equivalent to effective theoretical plate

j:

James-Martin gas compressibility factor, 3(P2−1)/2(P2−1)

j′:

Guiochon gas compressibility factor, 3(P2+2P+1)/4(P2+P+1)

k:

Partition ratio

K:

Partition coefficient

L:

Column length

L:

Dimensionless number in theoretical equations for C1

M:

Mean specific plate number

n:

Number of theoretical plates

n0 :

Geometric mean of n and N

N:

Number of effective theoretical plates

N:

Arithmetic mean of n and N

opgv:

Optimum practical gas velocity

opt:

Optimum, refers to conditions where h is minimum

pi :

Carrier gas absolute pressure at column inlet

p0 :

Carrier gas absolute pressure at column outlet

Δp:

Pressure drop along column

P:

Pressure ratio, pi/po

r:

Inside radius of column tube

rg :

Radius of free gas passage

SCOT:

Support coated open tubular (column)

ū:

Average linear carrier gas velocity

UTE%:

Percent utilization of theoretical efficiency

WCOT:

Wall coated open tubular (column)

β:

Phase ratio

η:

Carrier gas viscosity at column temperature

θ:

Ratio of average carrier gas velocities

E:

Experimental value

T:

Theoretical value

References

  1. L. S. Ettre, Open Tubular Columns in Gas Chromatography, Plenum Press, New York, 1965.

    Google Scholar 

  2. L. S. Ettre andJ. E. Purcell, Advances in Chromatography,J. C. Giddings andR. A. Keller, eds., Marcel Dekker, New York,10, 1 (1974).

    Google Scholar 

  3. D. H. Desty, A. Goldup andW. T. Swanton, Gas Chromatography,N. Brenner, J. E. Collen andM. D. Weiss, eds., Academic Press, New York, 1962, p. 105.

    Google Scholar 

  4. M. J. E. Golay, Anal. Chem.29, 928 (1957).

    Article  Google Scholar 

  5. J. C. Giddings, J. Chromatog.13, 301 (1964).

    Article  Google Scholar 

  6. D. C. Horne, J. H. Knox andL. McLaren, Separation Science1, 531 (1966).

    Google Scholar 

  7. L. S. Ettre, E. W. Cieplinski andW. Averill, J. Gas Chromatog.1 (2), 7 (1963).

    Google Scholar 

  8. G. Guiochon, Advances in Chromatography,J. C. Giddings andR. A. Keller, eds., Marcel Dekker, New York,8, 179 (1969).

    Google Scholar 

  9. A. B. Littlewood, Anal. Chem.38, 2 (1966).

    Article  Google Scholar 

  10. M. J. Golay, Gas Chromatography,D. H. Desty, ed., Butterworths, London, 1958, p. 36.

    Google Scholar 

  11. M. J. E. Golay, Nature199, 370 (1963).

    Google Scholar 

  12. M. J. E. Golay, Anal. Chem.40, 382 (1968).

    Article  Google Scholar 

  13. S. J. Hawkes, J. Chromatog.68, 1 (1972).

    Article  Google Scholar 

  14. S. J. Hawkes, J. Chromatog.124, 359 (1976).

    Article  Google Scholar 

  15. E. N. Fuller andJ. C. Giddings, J. Gas Chromatog.3, 222 (1965).

    Google Scholar 

  16. T. R. Marrero andE. A. Mason, J. Phys. Chem. Ref. data 1, 3 (1972).

    Google Scholar 

  17. C. R. Wilke andP. Chang, Am. Inst. Chem. Engr. J.1, 264 (1955).

    Google Scholar 

  18. W. Billen andS. Hawkes, J. Chromatog. Sci.15, 148 (1977).

    Google Scholar 

  19. I. Brown, Chromatographia, in press.

  20. D. H. Desty andA. Goldup, Gas Chromatography,R. P. W. Scott, ed., Butterworths, London, 1960, p. 162.

    Google Scholar 

  21. L. Blomberg, Chromatographia8, 324 (1975).

    Google Scholar 

  22. M. J. Hartigan andL. S. Ettre, J. Chromatog.119, 187 (1976).

    Article  Google Scholar 

  23. L. S. Ettre, unpublished data.

  24. J. D. Schieke andV. Pretorius, J. Chromatog.132, 223 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, I. The efficiency of open tubular gas chromatographic columns. Chromatographia 12, 265–270 (1979). https://doi.org/10.1007/BF02261827

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02261827

Key Words

Navigation