Skip to main content
Log in

A fascinating new field in colloid science: small ligand-stabilized metal clusters and their possible application in microelectronics

Part II: Future directions

  • Leading Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Small metal clusters, like Au55(PPh3)12Cl6, which fall in the size regime of 1–2 nm are colloidal nanoparticles with quantum properties in the transitional range between metals and semiconductors. These chemically tailored quantum dots show by the Quantum Size Effect (QSE) a level splitting between 20 and 100 meV, increasing from small particle sizes to the molecular state. The organic ligand shell surrounding the cluster acts like a dielectric “spacer” generating capacitances between neighboring clusters down to 10−18F. Therefore, charging effects superposed by level spacing effects can be observed. The ligand-stabilized colloidal quantum dots in condensed state can be described as a novel kind of artificial solid with extremely narrow mini or hopping bands depending on the chemically adjustable thickness of the ligand shell and its properties. Since its discovery, the Single Electron Tunneling (SET) effect has been recognized to be the fundamental concept for ultimate miniaturization in microelectronics. The controlled transport of charge carriers in arrangements of ligand-stabilized clusters has been observed already at room temperature through Impedance Spectroscopy (IS) and Scanning Tunneling Spectroscopy (STS). This reveals future directions with new concepts for the realization of simple devices for Single Electron Logic (SEL).

Part II presents models and connections between microscopic and macroscopic level, regardless of whether there already exist suitable nanoscale metal cluster compounds, and is aimed at the ultimate properties for a possible application in microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schön G, Simon U (1995) Prog Colloid Poly Sci (in press)

  2. Penzar Z, Ekardt W (1990) Z Phys D 17:69–72

    Google Scholar 

  3. Genzken O, Brack M, Chabant E, Meyer J (1992) Ber Bunsenges Phys Chem no 9 96:1217–1220

    Google Scholar 

  4. Balian R, Bloch C (1971) Ann Phys (N.Y.) 69:76

    Google Scholar 

  5. Ozin GA, Bowes CL, Steele M (1992) Mater Res Soc Symp Ser Macromolecular Host-Guest Inclusion Complexes (in press); Ozin GA (1992) Nanomaterials: Endo- and Exosemiconductors, Adv Chem Ser, A.C.S., Washington D.C.

  6. Reed M (1993) Spekt d Wiss 3:52–57

    Google Scholar 

  7. Cohen ML (1986) Proc 1st NEC Symp, Hakone and Kawasaki, Japan, p. 2–10

  8. Schmid G, Schön G, Simon U (1992) German Patent pending No 42-12220

  9. Schmid G, Schön G, Simon U (1992) USA Patent pending No 08/041,239

  10. Simon U (1992) PhD Thesis University of Essen, Germany

  11. Mielke F, Houbertz R, Hartmann U, Simon U, Schön G, Schmid G (1994) Europhys Lett (in press)

  12. Schmid G (1992) Chem Rev 92:1709–1727; Schmid G (ed) (1994), VCH, Weinheim (Germany)

    Google Scholar 

  13. Schmid G, Lehnert A, Malm J-O, Bovin J-O (1991) Angew Chem Int Ed Engl 30:852

    Google Scholar 

  14. Simon U, Schön G, Schmid G (1993) Angew Chem Int Ed Engl No 2 32:250–254

    Google Scholar 

  15. Mielke F, Houbertz R, Hartmann U, Simon U, Schön G, Schmid G (1995) (to be published)

  16. Vogel W, Rosner B, Tesche B (1993) J Phys Chem 97:11611–11616

    Google Scholar 

  17. Smit HHA, Thiel RC, de Jongh LJ, Schmid G, Klein N (1988) Sol St Com 65:915

    Google Scholar 

  18. Fairbanks MC, Benfield RE, Newport RJ, Schmid G (1990) Sol St Comm 74:431

    Google Scholar 

  19. Marcus MA, Andrews MP, Zegenhagen J, Bommannavar AS, Montano P (1990) Phys Rev B 42:3312

    Google Scholar 

  20. Fenske D (private communication), Diploma Thesis University of Karlsruhe, FRG

  21. Macdonald JR (1987) Impedance Spectroscopy, John Wiley & Sons, New York

    Google Scholar 

  22. van Dijk T, Burggraaf A (1981) Phys Stat Sol a 63:229–240

    Google Scholar 

  23. Schouler JL (1979) PhD Thesis Institut National Polytechnique de Grenoble, France

  24. Bauerle JE (1969) J Phys Chem Solids 30:2657–2670

    Google Scholar 

  25. Simon U, Schmid G, Schön G (1992) Mat Res Symp Proc Vol 272:167–175

    Google Scholar 

  26. Möhrke C (1993) PhD Thesis University of Essen, Germany

  27. Schmid G (to be published)

  28. Smokers RTM (1992) PhD Thesis University of Nijmegen, The Netherlands

  29. Zorin AB (1993) (to be published)

  30. Schön G (1994) Spektr d Wiss 4:22–24

    Google Scholar 

  31. Kolbert AC, de Groot HJM, van der Putten D, Brom HB, de Jongh LJ, Schmid G, Krautscheid H, Fenske D (1992) submitted to Z Phys D

  32. Kreibig U, Fauth K, Granqvist C-G, Schmid G (1990) Z Phys Chem 169:11–28

    Google Scholar 

  33. Peschel S (1993) Diploma Thesis University of Essen, FRG

  34. Funke K (1991) Ber Bunsenges Phys Chem 9:955–964

    Google Scholar 

  35. van Staveren MPJ, Brom HB, de Jongh LJ (1991) Physics Reports 208:1–96

    Google Scholar 

  36. Licharev KK, Zorin AB (1985) J Low Temp Phys 59:347

    Google Scholar 

  37. Gladun A, Zorin AB (1992) Phys i u Z No 4 23:159–165

    Google Scholar 

  38. Ozin GA (1992) Adv Mater No 10 4:612–649

    Google Scholar 

  39. Deutscher G, Levy YE, Ryazantzev IA, Dravin VA, Yakimov AI (1986) Europhys Lett 4:577

    Google Scholar 

  40. Hartman TE (1986) J Appl Phys No 4 34:943–947

    Google Scholar 

  41. Schönenberger C, van Houten H, Donkersloot HC (1992) Europhys Lett 20 (3):249–254

    Google Scholar 

  42. Nejoh H, Aono M (1993) Jpn J Appl Phys No 1B 32:532–535

    Google Scholar 

  43. Averin DV, Register LF, Licharev KK Hess K (1993) submitted to J Appl Phys

  44. Schmid G (1993) (to be published)

  45. Chi LF, Johnston RR, Ringsdorf H (1992) Thin Film Solids 210/211:211; (1992) Langmuir 8:1360; Chi LF, Anders M, Fuchs H, Johnston RR, Ringsdorf H (1993) Science 259:213

    Google Scholar 

  46. Becker C, Fries Th, Wandelt K, Kreibig U, Schmid G (1991) J Vac Sci Technol B9 2:810–813

    Google Scholar 

  47. von Klitzing K, Schmid G (1994) unpublished work

  48. Binnig G, Rohrer H, Gerber Ch, Weibel E (1982) Appl Phys Lett 40:178; Chen J (1993) Introduction to Scanning Tunneling Microscopy, Oxford University Press, New York

    Google Scholar 

  49. Licharev KK, Claeson T (1992) Spektr d Wiss 8:62–67

    Google Scholar 

  50. Koch H, Lübbig H (eds) (1992) Single-Electron Tunneling and Mesoscopic Devices, Springer, Berlin Heidelberg

    Google Scholar 

  51. Grabert H (ed) (1991) Z Phys B (Special Issue on Single Charge Tunneling) No 3:85

  52. Corcoran E (1992) Spekt d Wiss (Sonderheft 11) 1:76

    Google Scholar 

  53. Wang Y, Herron N, Mahler W, Suna A (1989) J Opt Soc Am B Vol 6 No 4:808–813

    Google Scholar 

  54. Fink J, Sohmen E (1992) Phys Bl No1 48:11–15

    Google Scholar 

  55. Hamann C, Burghardt H, Frauenheim T (1988); Ebeling W, Weißmantel Ch (eds), VEB, Berlin, 101–119

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, G., Simon, U. A fascinating new field in colloid science: small ligand-stabilized metal clusters and their possible application in microelectronics. Colloid Polym Sci 273, 202–218 (1995). https://doi.org/10.1007/BF00657826

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657826

Key words

Navigation