Skip to main content
Log in

Origin of facultative heterochromatin in the endosperm ofGagea lutea (Liliaceae)

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Facultative heterochromatin occurs not only in certain animals in connection with sex determination but also in members of at least one plant genus,Gagea (Liliaceae s. str.), but here in the course of embryo sac development, fertilization, and endosperm formation. The present contribution intends to provide undebatable photographic and cytometric evidence, previously not available, for the events in the course of which three whole genomes in the pentaploid endosperm nuclei ofGagea lutea become heterochroma-tinized. In this plant, embryo sac formation usually follows the Fritillaria type, i.e., the embryo sac is tetrasporic, and a “1 + 3 position” of the spore nuclei is followed by a mitosis in which the three chalazal spindles fuse and two triploid nuclei are formed. A triploid chalazal polar nucleus is derived from one of these, which contributes to the pentaploid endosperm. These nuclei in the chalazal part of the embryo sac show stronger condensation compared with the micropylar ones. The pycnosis of the triploid polar nucleus is maintained and even enhanced during endosperm proliferation, while the micropylar polar nucleus and the sperm nucleus maintain their euchromatic condition. The origin of the heterochromatic masses in the endosperm nuclei from the three chalazal genomes of the central cell is unambiguously evident from the distribution of heterochromatic chromosomes in the first endosperm mitosis and the following interphase. DNA content measurements confirm a 3 ∶ 2 relationship of heterochromatic and euchromatic chromosome sets, which is usually maintained up to the cellularized endosperm. Pycnotic nuclei in the chalazal part of megagametophytes are characteristic of several embryo sac types, but only forGagea spp. it is documented that such nuclei can take part in fertilization and endosperm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baranyi M, Greilhuber J (1996) Flow cytometric and Feulgen den-sitometric analysis of genome size variation inPisum. Theor Appl Genet 92: 297–307

    Google Scholar 

  • Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163: 676–677

    Google Scholar 

  • Belyaev ND, Keohane AM, Turner BM (1996) Differential underacetylation of histones H2A, H3 and H4 on the inactive X chromosome in human female cells. Hum Genet 97: 573–578

    PubMed  Google Scholar 

  • Brown SW (1966) Heterochromatin. Science 151: 417–425

    PubMed  Google Scholar 

  • —, Nur U (1964) Heterochromatic chromosomes in the coccids. Science 145: 130–136

    PubMed  Google Scholar 

  • Bužek J, Ebert I, Ruffini-Castiglione M, Široký J, Vyskot B, Greilhuber J (1998a) Structure and DNA methylation pattern of partially heterochromatinised endosperm nuclei inGagea lutea (Liliaceae). Planta 204: 506–514

    PubMed  Google Scholar 

  • —, Riha K, Široký J, Ebert I, Greilhuber J, Vyskot B (1998b) Histone H4 underacetylation in plant facultative heterochromatin. Biol Chem 379: 1235–1241

    PubMed  Google Scholar 

  • Carmichael JS, Friedman WE (1995) Double fertilization inGnetum gnemon: the relationship between the cell cycle and sexual reproduction. Plant Cell 7: 1975–1988

    PubMed  Google Scholar 

  • Darlington CD (1947) Nucleic acids and the chromosomes. Symp Soc Exp Biol 1: 252–269

    Google Scholar 

  • Dimitrova D, Ebert I, Greilhuber J, Kozhuharov S (1999) Karyotype constancy and genome size variation in BulgarianCrepis foetida s.l. (Asteraceae). Plant Syst Evol 217: 245–257

    Google Scholar 

  • Friedman WE (1991) Double fertilization inEphedra trifurca, a non-flowering seed plant: the relationship between fertilization events and the cell cycle. Protoplasma 165: 106–120

    Google Scholar 

  • — (1999) Expression of the cell cycle in sperm ofArabidopsis: implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes. Development 126: 1065–1075

    PubMed  Google Scholar 

  • Geitler L (1950) Notizen zur endomitotischen Polyploidisierung in Trichocyten und Elaiosomen sowie über die Kernstrukturen beiGagea lutea. Chromosoma 3: 271–281

    Google Scholar 

  • — (1963) Morphologie und Entwicklungsgeschichte der Zelle. Fortschr Bot 25: 1–12

    Google Scholar 

  • Greilhuber J (1973) Über die Entwicklung des Embryosacks vonMelampyrum undParentucellia latifolia (Scrophulariaceae, Pedicularieae). Oesterr Bot Z 121: 81–97

    Google Scholar 

  • — (1988) “Self-tanning”: a new and important source of stoichio-metric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst Evol 158: 87–96

    Google Scholar 

  • —, Ebert I (1994) Genome size variation inPisum sativum. Genome 37: 646–655

    Google Scholar 

  • Heitz E (1933) Die Herkunft der Chromocentren. Planta 18: 571–636

    Google Scholar 

  • Herr JM Jr (1971) A new clearing-squash technique for the study of ovule development in angiosperms. Am J Bot 58: 785–790

    Google Scholar 

  • Jeppesen P, Turner BM (1993) The inactive X chromosome in femal mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281–289

    PubMed  Google Scholar 

  • John B (1988) The biology of heterochromatin. In: Verma RS (ed) Heterochromatin. Cambridge University Press, Cambridge, pp 1–147

    Google Scholar 

  • Johri BM (1936) Studies in the family Alismataceae 4:Alisma plantago L.,A. plantago-aquatica L. andSagittaria graminea Mich. Proc Ind Acad Sci B 4: 128–138

    Google Scholar 

  • —, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • König C, Ebert I, Greilhuber J (1987) A DNA cytophotometric and chromosome banding study inHedera helix (Araliaceae), with reference to differential DNA replication associated with juvenile-adult phase change. Genome 29: 498–503

    Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190: 372–373

    PubMed  Google Scholar 

  • Maheshwari P (1946) TheFritillaria type of embryo-sac: a critical review. J Ind Bot Soc MOP lyengar Commemoration Volume: 101–119

  • Pechenitsyn VP (1972a) The development of theFritillaria type embryo sac in some Central Asiatic species ofTulipa. Bot Zh 57: 221–229 (in Russian, with English summary)

    Google Scholar 

  • — (1972b) The double fertilization in species ofTulipa withFritillaria type embryo sac. Bot Zh 57: 465–469 (in Russian, with English summary)

    Google Scholar 

  • Romanov ID (1936) Die Embryosackentwicklung in der GattungGagea Salisb. Planta 25: 438–459

    Google Scholar 

  • — (1961) The origin of the unique structure of endosperm nuclei inGagea. Dokl Akad Nauk SSSR 141: 984–986 (in Russian)

    Google Scholar 

  • — (1962) The origin of the unique structure of endosperm nuclei inGagea. Dokl Bot Sci Sect 141: 188–190

    Google Scholar 

  • Rutishauser A (1969) Embryologie und Fortpflanzungsbiologie der Angiospermen. Springer, Wien New York

    Google Scholar 

  • Schnarf K (1941) Vergleichende Cytologie des Geschlechtsapparates der Kormophyten. Borntraeger, Berlin

    Google Scholar 

  • Stenar H (1927) Über die Entwicklung des siebenkernigen Embryosackes beiGagea lutea Ker., nebst einigen Bemerkungen über die Reduktionsteilung beiGagea minima Ker. Svensk Bot Tidskr 21: 344–360

    Google Scholar 

  • Tamura MN (1998) Liliaceae. In: Kubitzki K (ed) Flowering plants: monocotyledons — Lilianae (except Orchidaceae). Springer, Berlin Heidelberg New York Tokyo, pp 343–353 (Kubitzki K [ed] The families and genera of vascular plants, vol 3)

    Google Scholar 

  • Temsch EM, Greilhuber J, Krisai R (1998) Genome size inSphagnum (peat moss). Bot Acta 111: 325–330

    Google Scholar 

  • Tschermak-Woess E (1963) Strukturtypen der Ruhekerne von Pflanzen und Tieren. Springer, Wien (Alfert M et al [eds] Protoplasmatologia, vol V, 1)

    Google Scholar 

  • van Went JL, Willemse MTM (1984) Fertilization. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York Tokyo, pp 273–317

    Google Scholar 

  • Woodard JW (1956) DNA in gametogenesis and embryogeny inTradescantia. J Biophys Biochem Cytol 2: 765–775

    PubMed  Google Scholar 

  • Zhang H-Q, Bohdanowicz J, Pierson ES, Li Y-Q, Tiezzi A, Cresti M (1995) Microtubular organization during asymmetrical division of the generative cell inGagea lutea. J Plant Res 108: 269–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Greilhuber.

Additional information

Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greilhuber, J., Ebert, I., Lorenz, A. et al. Origin of facultative heterochromatin in the endosperm ofGagea lutea (Liliaceae). Protoplasma 212, 217–226 (2000). https://doi.org/10.1007/BF01282922

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282922

Keywords

Navigation