Skip to main content
Log in

Estimation of diffuse irradiance on sloping, obstructed surfaces: An error analysis

Abschätzung der diffusen Bestrahlung geneigter, teilweiser abgeschirmter Oberflächen: Eine Fehleranalyse

  • Published:
Archives for meteorology, geophysics, and bioclimatology, Series B Aims and scope Submit manuscript

Summary

In several branches of climatology, and in related disciplines, estimates of shortwave and/or longwave diffuse irradiance are required. In this study, these irradiances are obtained by numerical integration of the fundamental radiance and source-receptor geometry equations for a variety of receptor slopes, receptor orientations, skyline patterns and sky radiance distributions. The angular increment used in the numerical integration over zenith and azimuth angle is varied to determine the optimal value in the trade-off between computing expense and accuracy. It is recommended that an angle ofπ/36 radians (5°) or smaller is required to evaluate the diffuse irradiance to 5 percent; for 10 percent error, the angle should not exceedπ/18 radians (10°).

Zusammenfassung

In etlichen Zweiggebieten der Klimatologie und verwandter Disziplinen ist es oft notwendig, Abschätzungen der kurzwelligen und langwelligen diffusen Einstrahlung zu liefern. In der vorliegenden Studie werden diese Einstrahlungswerte durch numerische Integration der fundamentalen Gleichungen für Strahlung und für die Geometrie der Auffangfläche für eine Vielzahl von Neigungs- und Orientationsverhältnissen, von Horizontabschirmung und von Verteilungen der Himmelsstrahlung bestimmt. Die in der numerischen Integration verwendenten Winkelelemente der Zenith- und Azimutwinkel wurden dahingehend verändert, um die Optimalwerte im Zusammenhang mit Rechenzeitaufwand und Rechengenauigkeit zu ermitteln. Es wird empfohlen, daß ein Winkel vonπ/36 rad (5°) oder kleiner nötig ist, um die diffuse Einstrahlung mit 5 Prozent Genauigkeit zu bestimmen. Für einen 10%igen Fehler soll der Winkelπ/18 rad (10°) nicht übersteigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnfield, A. J.: Numerical Modelling of Urban Surface Radiative Parameters. In: Papers in Climatology (Davies, J. A., ed), Discussion Paper No. 7, Department of Geography, McMaster University, Canada (1976).

    Google Scholar 

  2. Anfeld, A. J.: Evaluation of Empirical Expressions for the Estimation of Hourly and Daily Totals of Atmospheric Longwave Emission Under All Sky Conditions. Quart. J. R. Met. Soc.105, 1041–1052 (1979).

    Article  Google Scholar 

  3. Dave, J. V.: Validity of the Isotropic-Distribution Approximation in Solar Energy Estimations. Solar Energy19, 331–333 (1977).

    Article  Google Scholar 

  4. Dozier, J.: A Clear-Sky Spectral Solar Radiation Model for Snow-Covered Mountainous Terrain. Water Resour. Res.16, 709–718 (1980).

    Article  Google Scholar 

  5. Dozier, J., Outcalt, S. L.: An Approach Toward Energy Balance Simulation over Rugged Terrain. Geog. Analysis11, 65–85 (1979).

    Google Scholar 

  6. Enz, J. W., Klink, J. C., Baker, D. G.: Solar Radiation Effects on Pyrgeometer Performance. J. Appl. Met.14, 1297–1302 (1975).

    Article  Google Scholar 

  7. Garnier, B. J., Ohmura, A.: The Evaluation of Surface Variations in Solar Radiation Income. Solar Energy13, 21–34 (1970).

    Article  Google Scholar 

  8. Gates, D. M.: Biophysical Ecology. Berlin-Heidelberg-New York: Springer 1980.

    Google Scholar 

  9. Hottel, H. C., Sarofim, A. F.: Radiative Transfer. New York: McGraw-Hill 1967.

    Google Scholar 

  10. Kondratyev, K. Ya., Manolova, M. P.: The Radiation Balance of Slopes. Solar Energy4, 14–19 (1960).

    Article  Google Scholar 

  11. Latimer, J. R.: Radiation Measurement. International Field Year for the Great Lakes, Technical Manual No. 2 (1971).

  12. Liu, B. Y. H., Jordan, R. C.: Daily Insolation on Surfaces Tilted Toward the Equator. J. Amer. Soc. Heating Refrigerating Air-Conditioning Engineers3, 53–59 (1961).

    Google Scholar 

  13. Monteith, J. L.: Principles of Environmental Physics. New York: American Elsevier 1973.

    Google Scholar 

  14. Myrup, L. O., Morgan, D. L.: A Numerical Model of the Urban Atmosphere. Contr. Atmos. Sci.1, No. 4, University of California, Davis (1972).

    Google Scholar 

  15. Norris, D. J.: Solar Radiation on Inclined Surfaces. Solar Energy10, 72–76 (1966).

    Article  Google Scholar 

  16. Nunez, M.: The Calculation of Solar and Net Radiation in Mountainous Terrain. J. Biogeogr.7, 173–186 (1980).

    Article  Google Scholar 

  17. Parmelee, G. V.: Irradiation of Vertical and Horizontal Surfaces by Diffuse Solar Radiation from Cloudless Skies. Trans. Amer. Soc. Heating Ventilating Engineers60, 341–358 (1954).

    Google Scholar 

  18. Revfeim, K. J. A.: A Simple Procedure for Estimating Global Daily Radiation on Any Surface. J. Appl. Met.17, 1126–1131 (1978).

    Article  Google Scholar 

  19. Sellers, W. D.: Physical Climatology. Chicago: University of Chicago Press 1965.

    Google Scholar 

  20. Steven, M. D.: Standard Distributions of Clear Sky Radiance. Quart. J. R. Met. Soc.103, 457–465 (1977).

    Article  Google Scholar 

  21. Steven, M. D., Unsworth, M. H.: The Diffuse Solar Irradiance of Slopes under Cloudless Skies. Quart. J. R. Met. Soc.105, 593–602 (1979).

    Article  Google Scholar 

  22. Swinbank, W. C.: Longwave Radiation from Clear Skies. Quart. J. R. Met. Soc.89, 339–348 (1963).

    Article  Google Scholar 

  23. Temps, R. C., Coulson, K. L.: Solar Radiation Incident upon Slopes of Different Orientations. Solar Energy19, 179–184 (1977).

    Article  Google Scholar 

  24. Terjung, W. H., Louie, S. S-F.: Solar Radiation and Urban Heat Islands. Ann. Assoc. Amer. Geog.63, 181–207 (1973).

    Article  Google Scholar 

  25. Terjung, W. H., Louie, S. S-F.: A Climatic Model of Urban Energy Budgets. Geog. Analysis6, 341–367 (1974).

    Google Scholar 

  26. Terjung, W. H., O'Rourke, P. A.: Simulating the Causal Elements of Urban Heat Islands. Boundary-Layer Met.19, 93–118 (1980).

    Article  Google Scholar 

  27. Threlkeld, J. L.: Solar Irradiation of Surfaces on Clear Days. Trans. Amer. Soc. Heating Refrigerating Air-Conditioning Engineers69, 24–36 (1963).

    Google Scholar 

  28. Unsworth, M. H.: Long-Wave Radiation at the Ground. II. Geometry of Interception by Slopes, Solids, and Obstructed Planes. Quart. J. R. Met. Soc.101, 25–34 (1975).

    Google Scholar 

  29. Unsworth, M. H., Monteith, J. L.: Long-Wave Radiation at the Ground. I. Angular Distribution of the Incoming Radiation. Quart. J. R. Met. Soc.101, 13–24 (1975).

    Google Scholar 

  30. Williams, L. D., Barry, R. G., Andrews, J. T.: Application of Computed Global Radiation for Areas of High Relief. J. Appl. Met.11, 526–533 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnfield, A.J. Estimation of diffuse irradiance on sloping, obstructed surfaces: An error analysis. Arch. Met. Geoph. Biocl., Ser. B 30, 303–320 (1982). https://doi.org/10.1007/BF02324672

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02324672

Keywords

Navigation