Skip to main content
Log in

Determination of total carbon and total organic carbon from volatile air pollutants. Part III

Selective oxidation of volatile organic compounds in the presence of methane

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Summary

The possibility of selective oxidation of volatile organic compounds in the presence of methane was investigated. Thermal decomposition of a mixture of CH3COONa and NaOH was used as the source of methane introduced into a stream of purified air. Oxidation of the methane present in a stream of air on a layer of the Körbl catalyst is only slight and does not exceed 10%, even in the case of simultaneous presence of acetic acid, which is completely oxidized under identical conditions. Other volatile organic compounds also undergo complete oxidation. It was found that the degree of oxidation of 16 organic compounds is ≥97.5%. The detection limit of the developed method depends primarily on the effective removal of the so-called “carbon background” of the air sample, resulting from the presence of CO2, CO and CH4. The developed method of selective oxidation can be used for specific elimination of the effect of methane on the results of determinations of TOC in volatile air pollutants.

Zusammenfassung

Die Möglichkeit einer selektiven Oxydation flüchtiger organischer Verbindungen neben Methan wurde untersucht. Methan wurde im gereinigten Luftstrom durch thermische Zersetzung eines Gemisches von CH3COONa und NaOH hergestellt. Die Oxydation des Methans im Luftstrom an einer Körbl-Katalysatorschicht ist gering und überschreitet nicht 10%, sogar bei gleichzeitiger Anwesenheit von Essigsäure, welche unter diesen Bedingungen — wie andere flüchtige, organische Verbindungen — vollständig oxydiert wird. An 16 organischen Verbindungen wurde festgestellt, daß der Oxydationsgrad≧97,5% beträgt. Die Erfassungsgrenze der entwickelten Methode zur TOC-Bestimmung ist vor allem von einer effektiven Beseitigung des sogenannten Kohlenstoffblindwertes abhängig, der durch Anwesenheit von CO2, CO und CH4 in der Luftprobe verursacht wird. Das entwickelte, selektive Oxydationsverfahren kann somit zur spezifischen Eliminierung des Einflusses von Methan auf die Bestimmungsresultate des TOC-Gehaltes aus flüchtigen Luftverunreinigungen Anwendung finden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Haeberle, Chemieunterricht7, 4 (1976).

    Google Scholar 

  2. Ł. Matuszewska, Chem. Anal.17, 1147 (1972).

    Google Scholar 

  3. H. J. Van de Wiel, Meßtech. Autom., Int. Kongr., Kongreßvortr.,52 (1974).

  4. J. A. Giannovario, R. L. Grob, and P. W. Rulol, J. Chromatography121, 285 (1976).

    Google Scholar 

  5. P. Leinster, R. Perry, R. J. Young, Talanta24, 205 (1977).

    Google Scholar 

  6. R. Jeltes, VDI-Ber.270, 75 (1976).

    Google Scholar 

  7. A. A. Siddiqi and F. L. Worley jr., Atmos. Environ.11, 131 (1977).

    Google Scholar 

  8. G. C. Ortman, Analyt. Chemistry38, 644 (1966).

    Google Scholar 

  9. W. H. King jr., Environ. Sci. Technol.4, 1136 (1970).

    Google Scholar 

  10. J. Theer, Chem. Tech. Berl.20, 484 (1968); Analyt. Abstr.18, 617 (1970).

    Google Scholar 

  11. B. Dimitriades and D. E. Seizinger, Environ. Sci. Technol.5, 223 (1971).

    Google Scholar 

  12. D. Siegel, F. Müller, and K. Neuschwander, Chromatographia7, 399 (1974).

    Google Scholar 

  13. J. R. Comberiati, Analyt. Chemistry43, 1497 (1971).

    Google Scholar 

  14. R. W. Freedman and H. W. Lang, Rep. Invest. U. S. Bur. Mines, RI 7179, 1968; Analyt. Abstr.18, 615 (1970).

  15. P. J. Lebel, R. A. Lamontagne, and H. W. Goldstein, Int. Conf. Environ. Sensing Assess. (Proc.)2, 351 (1975).

    Google Scholar 

  16. L. M. Games and J. M. Hayes, Analyt. Chemistry48, 130 (1976).

    Google Scholar 

  17. T. Nakadoi, H. Fujimori, and Y. Yagi, J. Japan Soc. Air Pollut.10, 312 (1975); Analyt. Chern.49, 5R (1977).

    Google Scholar 

  18. D. W. Stevens, ASTM Spec. Tech. Publ.555, 88 (1974).

    Google Scholar 

  19. E. G. Rastjannikov and L. N. Tarasova, Gig. Sanit.1974, 69.

  20. F. Bruner, P. Ciccioli, and F. Di Nardo, J. Chromatography99, 661 (1974).

    Google Scholar 

  21. P. Ciccioli, G. Bertoni, E. Brancaleoni, R. Fratarcangeli, and F. Bruner, J. Chromatography126, 757 (1976).

    Google Scholar 

  22. M. Neuray, W. De Craecker, and J. Stevens, Ann. Mines Belg.5, 389 (1976).

    Google Scholar 

  23. T. Fujii and K. Imamura, Proc. Osaka Environ. Pollut. Contr. Center1, 77 (1975).

    Google Scholar 

  24. J. C. Cooper, H. E. Birdseye, and R. J. Donnelly, Environ. Sci. Technol.8, 671 (1974).

    Google Scholar 

  25. E. Kozłowski and J. Namieśnik, Mikrochim. Acta [Wien]1978 II, 435.

    Google Scholar 

  26. O. Saito, H. Asami, and K. Kawado, J. Japan Soc. Air Pollut.10, 309 (1975); Analyt. Abstr.49, 5R (1977).

    Google Scholar 

  27. W. B. Innés and A. J. Andreatch, Environ. Sci. Technol.4, 143 (1970).

    Google Scholar 

  28. D. A. Mack, C. D. Hollowell, and R. D. McLaughlin, LBL-2099, July 1973.

  29. E. Kozłowski and J. Namiesnik, Mikrochim. Acta [Wien]1978 II, 473.

    Google Scholar 

  30. J. Levée and J. M. Smith, AICHE J.22, 159 (1976).

    Google Scholar 

  31. B. Bobranski, Chemia organiczna, PWN, Warszawa, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlowski, E., Namieśnik, J. Determination of total carbon and total organic carbon from volatile air pollutants. Part III. Mikrochim Acta 71, 1–15 (1979). https://doi.org/10.1007/BF01197515

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197515

Keywords

Navigation