Skip to main content

Advertisement

Log in

The effect of incubation time distribution on the extinction characteristics of a rabies epizootic

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The continuous model of Anderson et al. (1981), Nature 289, 765–771, is successful in describing certain characteristics of rabies epizootics, in particular, the secondary recurrences which follow the initial outbreak; however, it also predicts the occurrence of exponentially small minima in the infected population, which would realistically imply extinction of the virus. Here we show that inclusion of a more realistic distribution of incubation times in the model can explain why extinction will not occur, and we give explicit parametric estimates for the minimum infected fox density which will occur in the model, in terms of the incubation time distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and I. Stegun (1964). Handbook of Mathematical Functions, Washington, DC: National Bureau of Standards.

    MATH  Google Scholar 

  • Anderson, R. M., H. C. Jackson, R. M. May and A. M. Smith (1981). Population dynamics of fox rabies in Europe. Nature 289, 765–771.

    Article  Google Scholar 

  • Artois, M., M. Langlais and C. Suppo (1997). Simulation of rabies control within an increasing fox population. Ecol. Modell. 97, 23–34.

    Article  Google Scholar 

  • Bacon, P. J. (Ed.) (1985a). Population Dynamics of Rabies in Wildlife, New York: Academic Press.

    Google Scholar 

  • Bacon, P. J. (1985b). Discrete time temporal models of rabies, in Population Dynamics of Rabies in Wildlife, New York: Academic Press, pp. 147–196.

    Google Scholar 

  • Baer, G. M. (Ed.) (1991). The Natural History of Rabies, 2nd edn, Boca Raton, FL: CRC Press.

    Google Scholar 

  • Ball, F. G. (1985). Spatial models for the spread and control of rabies incorporating group size, in Population Dynamics of Rabies in Wildlife, P. J. Bacon (Ed.), New York: Academic Press, pp. 197–222.

    Google Scholar 

  • Blancou, J., M. F. A. Aubert and M. Artois (1991). Fox rabies, in The Natural History of Rabies, 2nd edn, Boca Raton, FL: CRC Press, pp. 257–290.

    Google Scholar 

  • British Medical Association, (1995). The BMA Guide to Rabies, Abingdon, Oxfordshire: Radcliffe Medical Press.

    Google Scholar 

  • Durrett, R. and S. A. Levin (1994). The importance of being discrete (and spatial). Theor. Pop. Biol. 46, 363–394.

    Article  MATH  Google Scholar 

  • Fowler, A. C. and M. J. McGuinness (1982). A description of the Lorenz attractor at high Prandtl number. Physica D 5, 149–182.

    Article  MathSciNet  Google Scholar 

  • Frauenthal, J. C. (1986). Analysis of age-structure models, in Mathematical Ecology, T. G. Hallam and S. A. Levin (Eds), Berlin: Springer-Verlag, pp. 117–147.

    Google Scholar 

  • Grasman, J., H. Nijmeijer and E. J. M. Veling (1984). Singular perturbations and a mapping on an interval for the forced Van der Pol relaxation-oscillator. Physica D 13, 195–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoppensteadt, F. C. (1975). Mathematical Theories of Populations: Demographics, Genetics and Epidemics, Philadelphia: SIAM, (reprinted 1993).

    Google Scholar 

  • Keeling, M. J. (1997). Modelling the persistence of measles. Trends Microbiol. 5, 513–518.

    Article  Google Scholar 

  • Keeling, M. J. and B. T. Grenfell (1997). Disease extinction and community size: modelling the persistence of measles. Science 275, 65–67.

    Article  Google Scholar 

  • Keeling, M. J. and B. T. Grenfell (1998). Effect of variability in infection period on the persistence and spatial spread of infectious diseases. Math. Biosci. 147, 207–226.

    Article  MathSciNet  MATH  Google Scholar 

  • Macdonald, D. W. and D. R. Voigt (1985). The biological basis of rabies models, in Population Dynamics of Rabies in Wildlife, P. J. Bacon (Ed.), New York: Academic Press, pp. 71–108.

    Google Scholar 

  • Mollison, D. (1984). Simplifying simple epidemic models. Nature 310, 224–225.

    Article  Google Scholar 

  • Mollison, D. (1991). Dependence of epidemic and population velocities on basic parameters. Math. Biosci. 107, 255–287.

    Article  MATH  Google Scholar 

  • Mollison, D. (Ed.) (1995). The structure of epidemic models, in Epidemic Models: Their Structure and Relation to Data, Cambridge: Cambridge University Press, pp. 17–33.

  • Mollison, D. and S. A. Levin (1995). Spatial dynamics of parasitism, in Ecology of Infectious Diseases in Natural Populations, B. T. Grenfell and A. P. Dobson (Eds), Cambridge: Cambridge University Press, pp. 384–398.

    Google Scholar 

  • Murray, J. D., E. A. Stanley and D. L. Brown (1986). On the spatial spread of rabies among foxes. Proc. R. Soc. Lond. B 229, 111–150.

    Article  Google Scholar 

  • Parker, R. L. and R. E. Wilsnack (1966). Pathogenesis of skunk rabies virus: quantitation in skunks and foxes. Am. J. Vet. Res. 27, 33–38.

    Google Scholar 

  • Smith, G. C. and S. Harris (1991). Rabies in urban foxes (Vulpes vulpes): the use of a spatial stochastic simulation model to examine the pattern of spread and evaluate the efficacy of different control régimes. Phil. Trans. R. Soc. Lond. B 334, 459–479.

    Google Scholar 

  • Steck, F. and A. Wandeler (1980). The epidemiology of fox rabies in Europe. Epidemiol. Rev. 2, 71–96.

    Google Scholar 

  • Steele, J. H. and P. J. Fernandez (1991). History of rabies and global aspects, in The Natural History of Rabies, 2nd edn, G. M. Baer (Ed.), Boca Raton, FL: CRC Press, pp. 257–290.

    Google Scholar 

  • Tilman, D. and P. Kareiva (Eds) (1997). Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions, Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Toma, B. and L. Andral (1977). Epidemiology of fox rabies. Adv. Virus Res. 21, 1–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, A.C. The effect of incubation time distribution on the extinction characteristics of a rabies epizootic. Bull. Math. Biol. 62, 633–656 (2000). https://doi.org/10.1006/bulm.1999.0170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0170

Keywords

Navigation