Skip to main content
Log in

A model of growing vascular structures

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Increasing attention is being paid to the configuration and development of vascular structures and their possible correlations with physiological events. The study of angiogenesis in normal and pathological states as well as in the embryo and adult has provided new insights into the mechanism of vessel growth and organization of the vasculature. Various mathematical branching models have been developed. These constructions are mainly geometrical and only involve a branching phenomenon. We propose the use of a deterministic non-linear model based on physiological laws and hydrodynamics. Growth, branching and anastomosis, the three actual main events occurring in vascular growth, are included in this model. Space growth, including cells and vessels, is defined by a decreasing transformation. Space density and the length of new sprouts are controlled by a set of parameters. The conditions on these parameters are well established, which allows the production of realistic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arhaliass, A., G. Guiffant and J. Dufaux. 1991. L'apport d'une représentation ordonnée du réseau de microvaisseaux à la compréhension de son fonctionnement.Innovative Techniques Biol. Med. 12, 350–357.

    Google Scholar 

  • Ausprunk, D. A. and J. Folkman. 1977. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis.Microvasc. Res. 14, 53–63.

    Article  Google Scholar 

  • Back, L. H., T. K. Liem, E. Y. Kwack and D. W. Crawford. 1992. Flow measurements in a highly curved atherosclerotic coronary artery cast of man.J. Biomech. Eng. 114, 232–240.

    Google Scholar 

  • Barnhill, R. L. and J. E. Wolf, Jr. 1987. Angiogenesis and the skin.J. Am. Acad. Dermatol. 16, 1226–1242.

    Article  Google Scholar 

  • Barnsley, M. F. and S. Demko. 1985. Iterated function systems and the global construction of fractals.Proc. Roy. Soc. London Ser. A 399, 243–275.

    Article  MATH  MathSciNet  Google Scholar 

  • Bittner, H. R. 1991. Modelling of fractal vessel systems. InFractals in the Fundamental and Applied Sciences, H. O. Peitgen, J. M. Henriques and L. F. Penedo (Eds), pp. 59–70. New York: Elsevier Science Publishers.

    Google Scholar 

  • Clark, E. R. and E. L. Clark. 1939. Microscopic observations on the growth of blood capillaries in the living mammal.Am. J. Anat. 64, 251–301.

    Article  Google Scholar 

  • Feder, J. 1988.Fractals. New York: Plenum Press.

    MATH  Google Scholar 

  • Folkman, J. 1972a. Anti-angiogenesis: new concept for therapy of solid tumors.Ann. Surg. 175, 409–416.

    Google Scholar 

  • Folkman, J. 1972b. Angiogenesis in psoriasis: therapeutic implications.J. Invest. Dermatol. 59, 40–43.

    Article  Google Scholar 

  • Folkman, J. 1985. Toward an understanding of angiogenesis: search and discovery.Perspect. Biol. Med. 29, 10–36.

    Google Scholar 

  • Folkman, J. and M. Klagsbrun. 1987. Angiogenic factors.Science 235, 442–447.

    Google Scholar 

  • Gottlieb, M. E. 1990. Modelling blood vessels: a deterministic method with fractal structure based on physiological rules.Proceedings of the 12th International Conference Of IEEE EMBS, pp. 1386–1387. New York: IEEE Press.

    Google Scholar 

  • Gottlieb, M. E. 1991a. The VT model: a deterministic model of angiogenesis and biofractals based of physiological rules.Proceedings of the IEEE 17th Annual Northeast Bioengineering Conference, pp. 38–39. New York: IEEE Press.

    Google Scholar 

  • Gottlieb, M. E. 1991b. Vascular networks: fractal anatomies from non-linear physiologies.IEEE Eng. Med. Bio. Mag. 13(5), 2196–2197.

    Google Scholar 

  • Henkind, P. 1978. Ocular neovascularization. The Krill Memorial Lecture.Am. J. Ophthalmol. 85, 287–301.

    Google Scholar 

  • Hudlicka, O. 1984. Development of microcirculation: capillary growth and adaptation. InHandbook of Physiology, E. M. Renkin, C. C. Michel and S. R. Geiger (Eds), pp. 165–216. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Ingber, D. E. 1991. Control of capillary growth and differentiation by extracellular matrix. Use of tensegrity (tensional integrity) mechanism for signal processing.Chest 99, 34S-40S.

    Google Scholar 

  • Kiani, M. and A. Hudetz. 1991. Computer simulation of growth of anastomosing microvascular networks.J. Theor. Biol. 150, 547–560.

    Google Scholar 

  • Landini, G. and G. Misson. 1993. Simulation of corneal neo-vascularization by inverted diffusion limited aggregation.Invest. Ophthalmol. Visual Sci. 34(5), 1872–1875.

    Google Scholar 

  • Liotta, L., G. M. Saidel and J. Kleinerman. 1977. Diffusion model of tumor vascularization and growth.Bull. Math. Biol. 39, 117–128.

    Google Scholar 

  • Mandelbrot, B. B. 1982.The Fractal Geometry of Nature. San Francisco: Freeman.

    MATH  Google Scholar 

  • Phillips, G. D., R. A. Whitehead and D. R. Knighton. 1991. Initiation and pattern of angiogenesis in wound healing in the rat.Am. J. Anat. 192, 257–262.

    Article  Google Scholar 

  • Quemada, D., J. Dufaux and P. Flaud. 1993. L'hydrodynamique du sang.La Recherche 254, 584–590.

    Google Scholar 

  • Rodkiewicz, C. M., J. Centkowski and S. Zajac. 1992. On the subclavian steal syndrome. In vitro studies.J. Biomech. Eng. 114, 527–532.

    Google Scholar 

  • Ryan, T. J. 1970. Factors influencing the growth of vascular endothelium in the skin.Br. J. Dermatol. 82(S5), 99–111.

    Article  Google Scholar 

  • Stokes, C. L. and D. A. Lauffenburger. 1991. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis.J. Theor. Biol. 152, 377–403.

    Google Scholar 

  • Thrakal, K. W., W. H. Goodson and T. K. Hunt. 1979. Stimulation of wound blood vessel growth by wound macrophages.J. Surg. Res. 26, 430–436.

    Article  Google Scholar 

  • Vicsek, T. 1989.Fractal Growth Phenomena. New York: World Scientific Publishing Co.

    MATH  Google Scholar 

  • Waxman, A. M. 1981. Blood vessel growth as a problem in morphogenesis: a physical theory.Microvasc. Res. 22, 32–42.

    Article  Google Scholar 

  • Wolf, J. E., Jr. 1989. Angiogenesis in normal and psoriatic skin.Lab. Invest. 61, 139–142.

    Google Scholar 

  • Xu, X. Y., M. W. Collins and C. J. H. Jones. 1992. Flow studies in canine artery bifurcations using a numerical simulation method.J. Biomech. Eng. 114, 504–511.

    Google Scholar 

  • Zawicki, D. F., K. J. Rakesh, G. W. Schmid-Schoenbein and S. Chien. 1981. Dynamics of neovascularization in normal tissue.Microvasc. Res. 21, 27–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nekka, F., Kyriacos, S., Kerrigan, C. et al. A model of growing vascular structures. Bltn Mathcal Biology 58, 409–424 (1996). https://doi.org/10.1007/BF02460590

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460590

Keywords

Navigation