Skip to main content
Log in

Random-coil model for glomerular sieving of dextran

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Dextran has been the most commonly employed test molecule for probing the selectivity of glomerular filtration to macromolecules of varying size. The usual theories for hindered transport of solid spheres through pores have limited utility in interpreting clearance data for dextran or other linear polymers because such polymers in solution more closely resemble random, solvent-filled coils than solid spheres. To provide a model for glomerular filtration of random-coil macromolecules, the equilibrium partitioning of random coils between cylindrical pores and bulk solution was simulated using Monte Carlo calculations, and those results were combined with a hydrodynamic theory for restricted motion of solvent-filled polymer coils in pores. The rates of transport predicted for either neutral random coils or for solid spheres of the same Stokes-Einstein radius were significantly lower than observed transport rates of dextran through the glomerular capillary wall or across synthetic porous membranes. This facilitation of dextran transport was modeled by postulating weak, attractive interactions between dextran monomers and the pore wall. The random-coil model with attractive interactions, modeled using a short-range, square-well potential, was found to adequately represent dextran sieving data in normal rats. Various limitations of this approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Akima, H. 1972. Interpolation and smooth curve fitting based on local procedures.Comm. ACM 15, 914–918.

    Article  Google Scholar 

  • Bohrer, M. P., G. D. Patterson and P. J. Carroll. 1984. Hindered diffusion of dextran and Ficoll in microporous membranes.Macromolecules 17, 1170–1173.

    Article  Google Scholar 

  • Callaghan, P. T. and D. N. Pinder. 1983. A pulsed field gradient NMR study of self-diffusion in a polydisperse system: dextran in water.Macromolecules.16, 968–973.

    Article  Google Scholar 

  • Cannell, D. S. and F. Rondelez. 1980. Diffusion of polystyrenes through microporous membranes.Macromolecules 13, 1599–1602.

    Article  Google Scholar 

  • Casassa, E. F. 1967. Equilibrium distribution of flexible polymer chains between a macroscopic solution phase and small voids.J. Polym. Sci. Polym. Lett. 5, 773–777.

    Article  Google Scholar 

  • Davidson, M. G., U. W. Suter and W. M. Deen. 1987. Equilibrium partitioning of flexible macromolecules between bulk solution and cylindrical pores.Macromolecules 20, 1141–1146.

    Article  Google Scholar 

  • Davidson, M. G. and W. M. Deen. 1988a. Hindered diffusion of water-soluble macromolecules in membranes.Macromolecules 21, 3474–3481.

    Article  Google Scholar 

  • Davidson, M. G. and W. M. Deen. 1988b. Hydrodynamic theory for the hindered transport of flexible macromolecules in porous membranes.J. Membrane Sci. 35, 167–192.

    Article  Google Scholar 

  • Deen, W. M. 1987. Hindered transport of large molecules in liquid-filled pores.AIChE J. 33, 1409–1425.

    Article  Google Scholar 

  • Deen, W. M., C. R. Bridges, B. M. Brenner and B. D. Myers. 1985. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans.Am. J. Physiol. 249, F374-F389.

    Google Scholar 

  • Flory, P. J. 1953.Principles of Polymer Chemistry, pp. 399–413. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Garg, S. K. and S. S. Stivala. 1978. Assessment of branching in polymers from small-angle x-ray scattering (SAXS).J. Polym. Sci. Polym. Phys. 16, 1419–1434.

    Article  Google Scholar 

  • Gekko, K. 1971. Physicochemical studies of oligodextran. II. Intrinsic viscosity-molecular weight relationship.Makromol. Chem. 148, 229–238.

    Article  Google Scholar 

  • Gekko, K. 1981. Solution properties of dextran and its ionic derivatives.ACS Symp. Ser. 150, 415–438.

    Article  Google Scholar 

  • Guillot, G., L. Leger and F. Rondelez. 1985. Diffusion of large flexible polymer chains through model porous membranes.Macromolecules 18, 2531–2537.

    Article  Google Scholar 

  • Kathawalla, I. A. and J. L. Anderson. 1988. Pore size effects on diffusion of polystyrene in dilute solution.Ind. Engng Chem. Res. 27, 866–871.

    Article  Google Scholar 

  • Kramers, H. A. 1946. The behavior of macromolecules in inhomogeneous flow.J. chem. Phys. 14, 415–424.

    Article  Google Scholar 

  • Kuge, T., K. Kobayashi, S. Kitamura and H. Tanahashi. 1987. Degrees of long-chain branching in dextran.Carbohydrate Res. 160, 205–214.

    Article  Google Scholar 

  • Lin, N. P. and W. M. Deen. 1990. Effects of long-range polymer-pore interactions on the partitioning of linear polymers.Macromolecules 23, 2947–2955.

    Article  Google Scholar 

  • Maddox, D. A., W. M. Deen and B. M. Brenner. 1992. Glomerular filtration. InHandbook of Physiology. Section 8:Renal Physiology. E. E. Windhager (Ed.), pp. 545–638. New York: Oxford University Press.

    Google Scholar 

  • Marsaglia, G. 1972. Choosing a point from the surface of a sphere.Ann. Math. Stat. 43, 645–646.

    MATH  Google Scholar 

  • Oliver, J. D., III. 1992. Analysis of glomerular permselectivity in the rat using theoretical models of hindered transport. Ph. D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Oliver, J. D., III, S. Anderson, J. L. Troy, B. M. Brenner and W. M. Deen. 1992. Determination of glomerular size-selectivity in the normal rat with Ficoll.J. Am. Soc. Nephr. 3, 214–228.

    Google Scholar 

  • Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. 1986.Numerical Recipes: The Art of Scientific Computing. New York. Cambridge University Press.

    Google Scholar 

  • Remuzzi, A., C. Battaglia, L. Rossi, C. Zoja and G. Remuzzi. 1987. Glomerular size selectivity in nephrotic rats exposed to diets with different protein content.Am. J. Physiol. 253, F318-F327.

    Google Scholar 

  • Senti, F. R., N. N. Hellman, N. H. Ludwig, G. E. Babcock, R. Tobin, C. A. Glass and B. L. Lamberts. 1955. Viscosity, sedimentation, and light-scattering properties of fractions of an acid-hydrolyzed dextran.J. Polym. Sci. 17, 527–546.

    Article  Google Scholar 

  • Wishart, J. 1949. Cumulants of multivariate multinomial distributions.Biometrika 36, 47–58.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, J.D., Deen, W.M. Random-coil model for glomerular sieving of dextran. Bltn Mathcal Biology 56, 369–389 (1994). https://doi.org/10.1007/BF02460463

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460463

Keywords

Navigation