Skip to main content
Log in

Nernst-planck analog equations and stationary state membrane electric potentials

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A set of coupled nonlinear differential equations, determining the concentration profiles and electric potentials valid for isothermal transport of ions and molecules across a diffusion barrier are formulated, using a correction to the limiting expression for chemical potential gradients and the molecular expression for frictional force. These differential equations are similar to Nernst-Planck equations and reduce to these under appropriate approximations. Solutions of these equations valid under specified conditions are presented. Expressions for permeability, concentration profiles of many ion systems are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Agin, D. 1971. “Excitability Phenomena in Membranes.” Infoundations of Mathematical Biology, Vol. 1, (Ed. R. Rosen). New York: Academic Press.

    Google Scholar 

  • Blaustein, M. P. and J. M. Russell. 1975. “Sodium-Calcium Exchange and Calcium-Calcium Exchange in Internally Dialyzed Squid Giant Axons.”J. Memb. Biol.,22, 285–312.

    Article  Google Scholar 

  • Bearman, R. J. 1958. “Statistical Mechanical Theory of Thermal Conductivity in Binary Liquid Solutions.”J. Chem. Phys.,21, 1278–1286.

    Article  MathSciNet  Google Scholar 

  • Chang, D. C. 1977. “A Physical Model of Nerve Axons.”Bull. Math. Biol.,39, 1–22.

    Article  MATH  Google Scholar 

  • Goldman, D. E. 1943. “Potential, Impedance and Rectification in Membranes.”J. Gen. Physiol.,27, 37–60.

    Article  Google Scholar 

  • Hurlbut, W. P. 1971.Membranes and Ion Transport, Vol. 2 (Ed. E. Bittar). New York: Wiley Interscience.

    Google Scholar 

  • Kirkwood, J. G. 1967. “Collected Papers of Kirkwood.”Theory of Solutions, p. 26. New York: Gordon & Breach.

    Google Scholar 

  • Lakshminarayaniah, N. 1969.Transport Phenomena in Membranes. New York: Academic Press.

    Google Scholar 

  • Onsager, L. and R. M. Fuoss. 1932. “Irreversible Process in Electrolytes.”J. Phys. Chem.,36, 2689–2778.

    Article  MATH  Google Scholar 

  • Leuchtag, H. R. and J. C. Swihart. 1977. “Steady-state Electrodiffusion, Scaling, Exact Solution for ions of one charge, and the phase plane.”Biophys. J.,17, 27.

    Article  Google Scholar 

  • Tyrrell, H. J. V. 1961.Diffusion and Heat Flow in Liquids. London: Butterworth.

    Google Scholar 

  • Vaidhyanathan, V. S. 1971. “Influence of Chemical Reactions on Fluxes.”J. Theor. Biol.,33, 1–27.

    Article  Google Scholar 

  • Vaidhyanathan, V. S. 1977. “Philosophy and Phenomenology of Ion Transport and Chemical Reactions in Membrane Systems.” InTopics in Bioelectrochemistry & Bioenergetics, Vol. 1 (Ed. G. Milazzo). England: John Wiley & Sons.

    Google Scholar 

  • Vaidhyanathan, V. S. 1977b. “Permeability and Related Phenomena of Membranes.” InElectrical Phenomena at Biological Membranes (Ed. R. roux). New York: Elsevier.

    Google Scholar 

  • Vaidhyanathan, V. S. 1978. “Stationary State Membrane Potential of Loligo Forbesii Axon System.”J. Bioelectrochem. Bioenergetics,00, 000–000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaidhyanathan, V.S. Nernst-planck analog equations and stationary state membrane electric potentials. Bltn Mathcal Biology 41, 365–385 (1979). https://doi.org/10.1007/BF02460818

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460818

Keywords

Navigation