Skip to main content
Log in

Dimensional analysis in mathematical biology I. General discussion

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

Dimensional analysis is discussed from the viewpoint of its basic group properties and shown to be an algebraic Abelian group that is useful for analysis of physical measurements. The application of the method to various types of equations and the formulation of previously unclassified dimensions are discussed. Functional dimensional analysis is applied to the problems of cell size and biomass proliferation; future applications are also noted. A number of dimensionless terms have been formulated for cellular physiochemical phenomena. They apparently represent the first systematic study of biological dimensionless numbers recorded in the literature. A dimensionless proliferation law is suggested. A brief analysis of the physical dimensionality associated with information measures is carried out. Entropy and “information” are shown to be completely different in their dimensional meaning; other informational measures of possible interest in biology are proposed. The dimensional coding and computor analysis of biomathematical equations is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Birkhoff, G. D. 1960.Hydrodynamics, A study in Logic, Fact and Similitude. 2nd ed. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Boucher, D. F., and G. E. Alves. 1959. “Dimensionless Numbers.”Chem. Eng. Prog.,55(9): 55–64.

    Google Scholar 

  • Brachet, J., and A. E. Mirsky. 1960.The Cell: Biochemistry, Physiology, Morphology, Vol. I & II. New York: The Academic Press.

    Google Scholar 

  • Bridgman, P. W. 1922.Dimension Analysis. New Haven: Yale University Press.

    Google Scholar 

  • Brillouin, L. 1956.Science and Information Theory. New York: The Academic Press.

    MATH  Google Scholar 

  • Bull, H. B. 1951.Physical Biochemistry. 2nd ed. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Cherry, C. 1956.Symposium on Information Theory. London: Butterworths.

    MATH  Google Scholar 

  • Cowling, T. G. 1957.Magnetohydrodynamics. New York: Interscience Publications.

    MATH  Google Scholar 

  • D'yakonov, G. K. 1956.Voprosy Teorii Podobiya v Oblasti Fiziko-Khimicheskikh Protessov. (Problems of the Theory of Similitude in the Area of Physico-Chemical Processes.) Moscow: Acad. Sci. USSR.

    Google Scholar 

  • Eirich, F. R. 1956.Rheology Theory and Application, Vol. I. New York: The Academic Press.

    Google Scholar 

  • Esnault-Pelterie, R. 1950.Dimensional Analysis. Translation from French, F. Rouge, Lausanne.

  • Ford, E. H. R. 1959.Growth,23, 191–204.

    Google Scholar 

  • Fourier, J. B. J. 1822.Theorie Analytique de la Chaleur. Translation from French, 1878. London: Cambridge University Press.

    Google Scholar 

  • Günther, B., and E. Guerra. 1955, 1956. (Cited in Rashevsky, N.,Mathematical Biophysics, Vol. II, p. 291, New York: Dover Publications, Inc., 1960.)

  • Huntley, H. E. 1953.Dimensional Analysis. New York: Reinhart & Co.

    MATH  Google Scholar 

  • Keller, E. G., and R. E. Doherty. 1961.Mathematics of Modern Engineering, Vol. I. New York: Dover Publications, Inc.

    Google Scholar 

  • Kirpichev, M.V. 1953.Teoriya Podobiya. (Theory of Similitude.) Moscow: Publ. Acad. Sci. USSR.

    Google Scholar 

  • Klein, F. 1939.Geometry. New York: Dover Publications, Inc.

    MATH  Google Scholar 

  • Klinkenberg, A., and H. H. Mooy. 1948. “Dimensionless Groups in Fluid Friction, Heat and Material Transfer.”Chem. Eng. Prog.,44(1): 17–36.

    Google Scholar 

  • Landahl, H. D. (1959). “Biological Periodicities, Mathematical Biology and Aging.” Chap. 3 inAging and the Individual, J. E. Birren, Ed. Chicago: University of Chicago Press.

    Google Scholar 

  • Langhaar, H. L. 1951.Dimensional Analysis and the Theory of Models. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Levy, M. 1952.Annals N. Y. Acad. Sci.,55, 51.

    Google Scholar 

  • Luce, R. D. 1960. “The Theory of Selective Information and Some of Its Behavioral Applications.” Chap. 1 inDevelopments in Mathematical Psychology. Glencoe (Ill.): Free Press.

    Google Scholar 

  • Mazia, D. 1960.Second Conference on Mechanisms of Cell Division, Annals N. Y. Acad. Sci.,90, 455–469.

    Google Scholar 

  • Murphy, G. 1950.Similitude in Engineering. New York: Ronald Press.

    Google Scholar 

  • Newton, I. 1686.Principia Mathematica, 2, section 7.

  • Nogid, L. M. 1959.Teoriya Podobiya i Razmernostey. (Theory of Similarity and Dimensions.) Lengingrad: Gos. Syuz. Sudo Prom.

    Google Scholar 

  • Osgood, E. E. 1952.Pediatrics,15, 51.

    Google Scholar 

  • Osgood, E. E. 1960. Unpublished Report from the Dept. of Medicine, Univ. of Oregon Medical School, Portland.

  • Rashevsky, N. 1958. “Mathematical Approach to Fundamental Phenomena of Biology.” Chap. 10 inRadiation Biology and Medicine, W. D. Claus, Ed. Reading (Mass.): Addison-Wesley Publ. Co., Inc.

    Google Scholar 

  • — 1960.Mathematical Biophysics. 2rd ed. Vol. I & II. New York: dover Publications, Inc.

    MATH  Google Scholar 

  • Rayleigh, Lord. 1915.Nature. 95, 66.

    Google Scholar 

  • Reiner, J. M. 1960. “Biophysics.” Chap. 31 inFundamental Formulas of Physics, D. H. Menzel, Ed. New York: Dover Publications, Inc.

    Google Scholar 

  • Reznyakov, A. B. 1959.Metod Podobiya. (Method of Similitude.) Alma Atla: Publ. Acad. Sci. Kazakh. SSR.

    Google Scholar 

  • Robertson, T. B. 1923.The Chemical Basis of Growth and Senescence. Philadelphia: Lippincott.

    Google Scholar 

  • Sacher, G. A. 1956.Radiology,67, 250.

    Google Scholar 

  • Schmalhausen, J. 1927.Arch. Entwcklungsmechn. Organ.,109, 455. (Cited by Weiss.)

    Article  Google Scholar 

  • Sedov, L. I. 1959.Similarity and Dimensional Methods in Mechanics. (Translated from Russian.) New York and London: The Academic Press.

    MATH  Google Scholar 

  • Shock, N. W., and M. F. Morales, 1942. “A Fundamental Form for the Differenial Equation of Colonial and Organism Growth.”Bull. Math. Biophysics,4, 63–71.

    MathSciNet  Google Scholar 

  • Thompson, D'Arcy W. (Reprinted 1959)On Growth and Form. 2nd ed. Vol. I & II. Cambridge University Press

  • Thun, R. E. 1960. “On Dimensional Analysis.”IBM. J. Res. & Dev.,4(3), 349–356.

    Article  MATH  MathSciNet  Google Scholar 

  • Venikov, V. A. 1956.Fizicheskoye Modelirovaniye Elektrotricheskikh Sistem. (Physical Modeling of Electrical Systems.) Moscow: Gos. Energ. Izd.

    Google Scholar 

  • von Bertalanffy, L. 1941.Biol. Zentr., 61, 510 (Cited by Weiss.)

    Google Scholar 

  • —. 1957.Quart. Rev. Biol.,32, 217.

    Article  Google Scholar 

  • von Karman, T. 1954.Aerodynamics. Ithaca: Cornell University Press.

    MATH  Google Scholar 

  • Weiss, P., and J. Kavanau. 1957.J. Gen. Physiol.,41, 1–47.

    Article  Google Scholar 

  • Yockey, H. P.et al. 1958.Symposium on Information Theory in Biology. New York: Pergamon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stahl, W.R. Dimensional analysis in mathematical biology I. General discussion. Bulletin of Mathematical Biophysics 23, 355–376 (1961). https://doi.org/10.1007/BF02476492

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02476492

Keywords

Navigation