Skip to main content
Log in

Genome variations in the transition from amphibians to reptiles

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Many characters differentiate amphibian from reptilian genomes. The former have, on the average, larger and more variable genome sizes, a greater repetitive DNA percentage, and a higher interspersion level among DNAs with different degrees of repetitivity. Reptiles have more reduced and uniform genome sizes, a repetitive DNA percentage generally lower than 50%, and a lower interspersion level. Other differences can be observed in the chromosome banding and in the correlations between genome size and other morphometric and functional parameters of the cell.

The differences found in amphibians and reptiles seem to indicate that in these two vertebrate classes there is a different tendency toward or tolerance of the accumulation and preservation of genetically dispensable DNA fractions. This might depend either on a different propensity toward genic amplification or on the appearance, in reptiles, of stricter and more efficient constraints regulating genome size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andronico F, De Lucchini S, Graziani F, Nardi I, Barsacchi-Pilone G (1985) Molecular organization of ribosomal RNA genes clustered at variable chromosomal sites inTriturus vulgaris meridionalis (Amphibia, Urodela). J Mol Biol 186:219–229

    Article  PubMed  Google Scholar 

  • Baldari CT, Amaldi F (1977) Length and interspersion of repetitive and non-repetitive DNA sequences in four amphibian species with different genome sizes. Chromosoma 61:359–368

    Article  PubMed  Google Scholar 

  • Barsacchi G (1991) Satellite DNA in the newts (Amphibia, Urodela). In: Ghiara G (ed) Evolution of terrestrial vertebrates. Mucchi, Modena (in press)

    Google Scholar 

  • Bennett MJD (1971) The duration of meiosis. Proc Roy Soc Lond B 178:277–299

    Google Scholar 

  • Bernardi G, Bernardi G (1990) Compositional patterns in the nuclear genome of cold-blooded vertebrates. J Mol Evol 31: 265–281

    PubMed  Google Scholar 

  • Bickham JN (1984) Patterns and modes of chromosomal evolution in reptiles. In: Sharma AK, Sharma A (eds) Chromosomes in evolution and eukaryotic groups, vol 2. CRC Press, Boca Raton, FL, pp 13–40

    Google Scholar 

  • Bickham JW, Rogers DS (1985) Structure and variation of the nucleolus organizer region in turtles. Genetica 67:171–184

    Google Scholar 

  • Bogart JP (1980) Evolutionary implications of polyploidy in amphibians and reptiles. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum, New York, pp 341–378

    Google Scholar 

  • Capriglione T, Olmo E, Odierna G, Improta B, Morescalchi A (1987) Cytofluorometric DNA base determination in vertebrate species with different genome sizes. Basic Appl Histochem 31:119–126

    PubMed  Google Scholar 

  • Capriglione T, Olmo E, Odierna G, Smith DI, Miller OJ (1989) Genome composition and tandemly repetitive sequence at some centromeres in the lizardPodarcis sicula Raf. Genetica 79:85–91

    Article  Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34: 247–278

    PubMed  Google Scholar 

  • Cavalier-Smith T (1985) Eukaryote gene numbers, non-coding DNA and genome size. In: Cavalier-Smith T (ed) The evolution of genome size. John Wiley & Sons, New York, pp 1–19

    Google Scholar 

  • Comings DE, Avelino E, Beçak W (1973) Heavy shoulder DNA in snakes. Cytogenet Cell Genet 12:2–7

    PubMed  Google Scholar 

  • Cremisi F, Carluccio MA, Scarabino D, Barsacchi G, Salvadori P (1989) A ribozyme transcribed from repeated DNA sequences in the newt: transcription regulation and catalytic activity. Atti Assoc Genet Ital XXXV:85–86

    Google Scholar 

  • Cremisi F, Carluccio MA, Salvadori P, Barsacchi G (1990) Self-cleaving RNA inTriturus. Cell Biol Int Rep 14:51

    Article  Google Scholar 

  • Diaz MO, Gall JG (1985) Giant readthrough transcription units at the histone loci on lampbrush chromosomes of the newtNotophthalmus. Chromosoma 92:243–253

    Article  PubMed  Google Scholar 

  • Diaz MO, Barsacchi-Pilone G, Mahon KA, Gall JG (1981) Transcripts from both strands of a satellite DNA occur on lampbrush chromosome loops of the newtNotophthalmus. Cell 24:649–659

    Article  PubMed  Google Scholar 

  • Epstein LM, Gall JG (1987) Self-cleaving transcripts of satellite DNA from newt. Cell 48:535–543

    Article  PubMed  Google Scholar 

  • Epstein LM, Mahon KA, Gall JG (1986) Transcription of a satellite DNA in the newt. J Cell Biol 103:1137–1144

    Article  PubMed  Google Scholar 

  • Giorgi PP, Fischberg M (1982) Cellular DNA content in different species ofXenopus. Comp Biochem Physiol 73B:839–843

    Google Scholar 

  • Goin OB, Goin JC, Bachmann K (1968) DNA and amphibian life history. Copeia 1968:532–540

    Google Scholar 

  • Hilder VA, Livesey RN, Turner PC, Vlad MT (1981) Histone gene number in relation to C-value in amphibians. Nucleic Acids Res 21:5737–5746

    Google Scholar 

  • Hilder VA, Dawson GA, Vlad MT (1983) Ribosomal 5S genes in relation to C-value in amphibians. Nucleic Acids Res 11: 2381–2390

    PubMed  Google Scholar 

  • Holmquist GP (1989) Evolution of chromosome bands: molecular ecology of noncoding DNA. J Mol Evol 28:469–486

    PubMed  Google Scholar 

  • Horner H, Macgregor HC (1983) C-value and cell volume: their significance in the evolution and development of amphibians. J Cell Sci 63:135–146

    PubMed  Google Scholar 

  • John B, Miklos G (1988) The eukaryote genome in development and evolution. Allen & Unwin, Boston

    Google Scholar 

  • Kasahara S, Yonenaga-Yassuda Y, Schincariol RA, L'Abbate M (1983) Chromosome mechanisms of sex determination, G- and C-band patterns and nucleolar organizer regions inTropidurus torquatus (Sauria, Iguanidae). Genetica 60:151–156

    Article  Google Scholar 

  • Kasahara S, Yonenaga-Yassuda Y, Rodrigues MT (1987) Geographical karyotypic variations and chromosome banding patterns inTropidurus hispidus (Sauria, Iguanidae) from Brazil. Caryologia 40:43–57

    Google Scholar 

  • Kay BK, Jamrich M, Dawid IB (1984) Transcription of a long, interspersed, highly repeated DNA element inXenopus laevis. Dev Biol 105:518–524

    Article  PubMed  Google Scholar 

  • King M (1990) 2. Amphibia. In: John B (ed) Animal Cytogenetics 4. Chordata. Gebruder Borntraeger, Berlin VI, 241 pp

    Google Scholar 

  • Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Article  PubMed  Google Scholar 

  • Macgregor HC (1982) Ways of amplifying ribosomal genes. In: Jordan EG, Cullis CA (eds) The nucleolus. Cambridge University Press, Cambridge, pp 129–151

    Google Scholar 

  • Macgregor HC (1990) Newts and two studies in molecular cytogenetics. In: Olmo E (ed) Cytogenetics of amphibians and reptiles. Birkhäuser Verlag, Basel, pp 61–83

    Google Scholar 

  • Macgregor HC, Andrews C (1977) The arrangement and transcription of “middle repetitive” DNA sequences on lampbrush chromosomes ofTriturus. Chromosoma 63:109–126

    Article  Google Scholar 

  • Macgregor HC, Sessions SK (1986) The biological significance of variation in satellite DNA and heterochromatin in newts of the genusTriturus: an evolutionary perspective. Phil Trans R Soc Lond B 312:243–259

    Google Scholar 

  • Macgregor HC, Sessions SK (1986) Models for evolution in large genomes and karyotypes of urodeles. Verh Dtsch Zool Ges 79:137–148

    Google Scholar 

  • Mancino G (1990) Cytogenetics and chromosome speciation in European newts of the genusTriturus. In: Olmo E (ed) Cytogenetics of amphibians and reptiles. Birkhäuser Verlag, Basel, pp 85–111

    Google Scholar 

  • Mancino G, Ragghianti M, Bucci-Innocenti S (1977) Cytotaxonomy and cytogenetics in European newt species. In: Taylor DH, Guttman SI (eds) The reproductuve biology of amphibians. Plenum, New York, pp 411–447

    Google Scholar 

  • Mazin AL, Borkin LJ (1979) Nuclear DNA content in green frogs of the genusRana. Mitt Zool Mus Berl 55:217–224

    Google Scholar 

  • Mizuno S, Macgregor HC (1974) Chromosomes, DNA sequences and evolution in salamanders of the genusPlethodon. Chromosoma 48:239–296

    Article  PubMed  Google Scholar 

  • Morescalchi A (1975) Chromosome evolution in the caudate Amphibia. Evol Biol 8:339–387

    Google Scholar 

  • Morescalchi A (1977) Adaptation and karyotype in Amphibia. Bol Zool 44:287–294

    Google Scholar 

  • Morescalchi A (1990) Cytogenetics and the problem of lissamphibian relationships. In: Olmo E (ed) Cytogenetics of amphibians and reptiles. Birkhäuser Verlag, Basel, pp 1–19

    Google Scholar 

  • Morescalchi A, Olmo E (1982) Single-copy DNA and vertebrate phylogeny. Cytogenet Cell Genet 34:93–101

    PubMed  Google Scholar 

  • Oeldorf E, Nishioka M, Bachmann K (1978) Nuclear DNA amounts and developmental rate in holarctic Anura. Z Zool Syst Evolutionforsch 16:216–224

    Google Scholar 

  • Olmo E (1981) Evolution of genome size and DNA base composition in reptiles. Genetica 57:39–50

    Article  Google Scholar 

  • Olmo E (1983) Nucleotype and cell size in vertebrates: a review. Basic Appl Histochem 27:227–256

    PubMed  Google Scholar 

  • Olmo E (1986) 3. A reptilian. In: John B (ed) Animal cytogenetics 4. Chordata. Gebrüder Borntraeger, Berlin IV, 100 pp

    Google Scholar 

  • Olmo E, Odierna G (1982) Relationships between DNA content and cell morphometric parameters in reptiles. Basic Appl Histochem 26:27–34

    PubMed  Google Scholar 

  • Olmo E, Serra V, Cobror O (1981) Alcuni aspetti dell'evoluzione del DNA nei Rettili. Atti VI Congresso annuale SIBRES Napoli, p 4

  • Olmo E, Morescalchi A, Stingo V, Odierna G (1982) Genome characteristics and the systematics of the Discoglossidae (Amphibia Salientia). Monit Zool Ital 16:283–299

    Google Scholar 

  • Olmo E, Morescalchi A, Cobror O, Odierna G (1986) Role of highly repetitive DNA and heterochromatin in the evolution of lizards. In: Roček Z (ed) Studies in herpetology. Charles University, Prague, pp 79–83

    Google Scholar 

  • Olmo E, Capriglione T, Odierna G (1989) Genome size evolution in vertebrates: trends and constraints. Comp Biochem Physiol 92B:447–453

    Google Scholar 

  • Pedersen RA (1971) DNA content, ribosomal gene multiplicity and cell size in fish. J Exp Zool 177:65–78

    Article  PubMed  Google Scholar 

  • Schmid M (1983) Evolution of sex chromosomes and heteromorphic systems in Amphibia. Differentiation 23[Suppl]:S13-S22

    PubMed  Google Scholar 

  • Schmid M (1990) Chromosome banding in Amphibia. In: Olmo E (ed) Cytogenetics of amphibians and reptiles. Birkhäuser Verlag, Basel, pp 21–45

    Google Scholar 

  • Schmid M, Guttenbach M (1988) Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma 97:101–114

    Article  PubMed  Google Scholar 

  • Sessions SK, Larson A (1987) Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution 41:1239–1251

    Google Scholar 

  • Sims SH, Macgregor HC, Pellatt PS, Horner HA (1984) Chromosome 1 in crested and marbled newts (Triturus): an extraordinary case of heteromorphism and independent chromosome evolution. Chromosoma 89:169–185

    Article  Google Scholar 

  • Singh L, Purdom IF, Jones KW (1980) Sex chromosome associated satellite DNA: evolution and conservation. Chromosoma 79:137–157

    Article  PubMed  Google Scholar 

  • Szarski H (1976) Cell size and nuclear DNA content in vertebrates. Int Rev Cytol 44:93–111

    PubMed  Google Scholar 

  • Thiery JP, Macaya G, Bernardi G (1976) An analysis of eukaryotic genomes by density gradient centrifugation. J Mol Biol 108:219–235

    PubMed  Google Scholar 

  • Thomson KS, Muraszko K (1978) Estimation of cell size and DNA content in fossil fishes and amphibians. J Exp Zool 205: 315–320

    Article  Google Scholar 

  • Vignali R, Rijli FM, Batistoni R, Fratta D, Cremisi F, Barsacchi G (1991) Two dispersed highly repeated DNA families ofTriturus vulgaris meridionalis (Amphibia Urodela) are widely conserved among Salamandridae. Chromosoma 100:87–96

    Article  PubMed  Google Scholar 

  • Wu Z, Murphy C, Gall JG (1986) A transcribed satellite DNA from the bullfrogRana catesbeiana. Chromosoma 93:291–297

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmo, E. Genome variations in the transition from amphibians to reptiles. J Mol Evol 33, 68–75 (1991). https://doi.org/10.1007/BF02100197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100197

Key words

Navigation