Skip to main content
Log in

Some evidence for the universality of structural periodicity in proteins

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A new simple and sensitive method for detecting small periodicity (repetition of a small segment along the chain) in proteins is developed, based on the repetition of identical residues. 38 proteins from organisms representing different levels of evolutionary development have been tested for small periodicity. The same is done with the nodal ancestors of 25 of them. The results are presented graphically (the periodicity curves). The statistical signficance of the observed periodicity is confirmed by a modified version of the chi-square test. All the results obtained support the conception that the small periodicity of the contemporary proteins is a reflection of their evolutionary history and that the most ancient proteins have arisen through a polycondensation of short peptides or through transcription and translation of satellite-type repeat sequence DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando T, Watanabe S (1969) Int J Peptide Protein Res 1:221–224

    Google Scholar 

  • Balian G, Click EM, Bornstein P (1971) Biochemistry 10:4470–4478

    Google Scholar 

  • Barker WC (1972a) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, National Biomedical Research Foundation, Washington DC, p D-166

    Google Scholar 

  • Barker WC (1972b) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, National Biomedical Research Foundation, Washington DC, p D-133

    Google Scholar 

  • Barker WC, Dayhoff MO (1972) Detecting distant relationships: computer methods and results. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, National Biomedical Research Foundation, Washington DC, pp 101–110

    Google Scholar 

  • Barker WC, Dayhoff MO (1976) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 2, National Biomedical Research Foundation, Washington DC, p 82

    Google Scholar 

  • Barker WC, Ketcham LK, Dayhoff MO (1978) J Mol Evol 10:265–281

    Google Scholar 

  • Black JA, Harkins RN, Stenzel P (1976) Int J Peptide Protein Res 8:125–130

    Google Scholar 

  • Blomback B (1969) Brit J Haemat 17:145–157

    Google Scholar 

  • Bornstein P (1967) J Biol Chem 242:2572–2574

    Google Scholar 

  • Botes DP (1971) J Biol Chem 246:7383–7391

    Google Scholar 

  • Botes DP, Viljoen CC (1974) J Biol Chem 249:3827–3835

    Google Scholar 

  • Braunitzer G, Gehring-Muller R, Hilschmann N, Hilse K, Hobom G, Rudloff V, Wittmann-Liebold B (1961) Z Physiol Chem 325:283–286

    Google Scholar 

  • Butler WT (1970) Biochemistry 9:44–50

    Google Scholar 

  • Butler WT, Ponds SL (1971) Biochemistry 10:2076–2081

    Google Scholar 

  • Čechova D, Jonakova V, Šorm F (1971) Coll Czechoslov Chem Commun 36:3342–3357

    Google Scholar 

  • Dayhoff MO (1976) Survey of new data and computer methods of analysis. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 2, National Biomedical Research Foundation, Washington DC, pp 1–8

    Google Scholar 

  • Dayhoff MO, Barker WC, Hunt LT (1976) Protein superfamilies. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 2, National Biomedical Research Foundation, Washington DC, pp 9–19

    Google Scholar 

  • Dayhoff MO, Hunt LT, McLaughlin PJ, Jones DD (1972) Gene duplications in evolution: the globins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, National Biomedical Research Foundation, Washington DC, pp 17–30

    Google Scholar 

  • DeHaas GH, Slotboom AJ, Bonsen PPM, Nieuwenhuizen W, Van Deenen LLM, Maroux S, Dlouha V, Desnuelle P (1970) Biochim Biophys Acta 221:54–61

    Google Scholar 

  • Dlouha V, Pospišilova D, Meloun B, Šorm F (1968) Coll Czechoslov Chem Commun 33:1363–1365

    Google Scholar 

  • Dus K, Sletten K, Kamen MD (1968) J Biol Chem 243:5507–5518

    Google Scholar 

  • Elleman TC, Dopheide TA (1972) J Biol Chem 247:3900–3909

    Google Scholar 

  • Fietzek PP, Rexrodt FW, Hopper KE, Kuehn K (1973) Eur J Biochem 38:396–400

    Google Scholar 

  • Findlay JBC, Brew K (1972) Eur J Biochem 27:65–86

    Google Scholar 

  • Gatlin LL (1974) J Mol Evol 3:189–208

    Google Scholar 

  • Goldstone A, Smith EL (1966) J Biol Chem 241:4480–4486

    Google Scholar 

  • Greene LJ, Bartelt DC (1969) J Biol Chem 244:2646–2657

    Google Scholar 

  • Hunt LT (1972a) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, National Biomedical Research Foundation, Washington DC, p D-380

    Google Scholar 

  • Hunt LT (1972b) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, National Biomedical Research Foundation, Washington DC, p D-374

    Google Scholar 

  • Hunt LT (1972c) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, National Biomedical Research Foundation, Washington DC, p D-187

    Google Scholar 

  • Hunt LT, Dayhoff MO (1976) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 2, National Biomedical Research Foundation, Washington DC, p 206

    Google Scholar 

  • Ivanov OCh (1978) J Mol Evol 12:1–10

    Google Scholar 

  • Ivanov OCh, Ivanov ChP (1976) Sequence analogy of proinsulin and some neurotoxins. In: Fox JL, Deyl Z, Blažej A (eds) Protein structure and evolution. M. Dekker, New York Basel, pp 413–428

    Google Scholar 

  • Ivanov ChP, Ivanov OCh (1979) Toxicon 17:205–220

    Google Scholar 

  • Iwanaga S, Blomback B, Grondahl NJ, Hessel B, Wallen P (1968) Biochim Biophys Acta 160:280–283

    Google Scholar 

  • Jolles J, Jolles P (1972) FEBS Lett 22:31–33

    Google Scholar 

  • Kang AH, Bornstein P, Piez KA (1967) Biochemistry 6:788–795

    Google Scholar 

  • Klippenstein GL, Holleman JW, Klotz IM (1968) Biochemistry 7:3868–3878

    Google Scholar 

  • Li CH, Dixon JS (1971) Archs Biochem Biophys 146:233–236

    Google Scholar 

  • Matsubara H, Sasaki RM, Chain RK (1967) Proc Natl Acad Sci US 57:439–445

    Google Scholar 

  • McLachlan AD (1972) J Mol Biol 64:417–437

    Google Scholar 

  • McLaughlin PJ (1972a) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, National Biomedical Research Foundation, Washington DC, p D-367

    Google Scholar 

  • McLaughlin PJ (1972b) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, National Biomedical Research Foundation, Washington DC, p D-41

    Google Scholar 

  • McLaughlin PJ (1972c) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, National Biomedical Research Foundation, Washington DC, p D-40

    Google Scholar 

  • Mebs D, Narita K, Iwanaga S, Samejima Y, Lee CY (1972) Z Physiol Chem 353:243–262

    Google Scholar 

  • Narita K, Lee CY (1970) Biochem Biophys Res Commun 41:339–343

    Google Scholar 

  • Nolan C, Margoliash E, Peterson JD, Steiner DF (1971) J Biol Chem 246:2780–2795

    Google Scholar 

  • Ogawa Y, Quagliarotti G, Jordan J, Taylor CW, Starbuck WC, Busch H (1969) J Biol Chem 244:4387–4392

    Google Scholar 

  • Palau J, Puigdoménech P (1974) J Mol Biol 88:457–469

    Google Scholar 

  • Pettigrew GW (1972) FEBS Lett 22:64–66

    Google Scholar 

  • Rochat H, Rochat C, Miranda F, Lissitzky S, Edman P (1970) Eur J Biochem 17: 262–266

    Google Scholar 

  • Romero-Herrera AE, Lehmann H (1972) Biochim Biophys Acta 278:62–67

    Google Scholar 

  • Sato S, Tamiya N (1971) Biochem J 122:453–461

    Google Scholar 

  • Shipolini RA, Doonan S, Vernon CA (1974) Eur J Biochem 48:477–483

    Google Scholar 

  • Smyth DG, Stein WH, Moore S (1963) J Biol Chem 238:227–234

    Google Scholar 

  • Soederqvist T, Blombaeck B (1971) Naturwissenschaften 58:16–23

    Google Scholar 

  • Šorm F, Keil B, Holeyšovsky V, Knesslova V, Kostka V, Mäsiar P, Meloun B, Mikeš O, Tomašek V, Vanêček J (1957) Coll Czechoslov Chem Commun 22:1310–1329

    Google Scholar 

  • Šorm F, Keil B, Vanêček J, Tomašek V, Mikeš O, Meloun B, Kostka V, Holeyšovsky V (1961) Coll Czechoslov Chem Commun 26:532–578

    Google Scholar 

  • Stewart JW, Margoliash E (1965) Canad J Biochem 43:1187–1206

    Google Scholar 

  • Tanaka M, Haniu M, Matsueda G, Yasunobu KT, Himes RH, Akagi JM, Barnes EM, Cevanathan T (1971) J Biol Chem 246:3953–3960

    Google Scholar 

  • Thomsen J, Lund EH, Kristiansen K, Brunfeldt K, Malmquist J (1972) FEBS Lett 22:34–36

    Google Scholar 

  • Tiplady B, Goodman M (1977) J Mol Evol 9:343–347

    Google Scholar 

  • Woese CR (1971) J Theor Biol 33:29–34

    Google Scholar 

  • Woese CR (1973) J Mol Evol 2:205–208

    Google Scholar 

  • Wuilmart C, Wijns L, Urbain J (1975) J Mol Evol 5:259–278

    Google Scholar 

  • Yang CC, Yang HJ, Huang JS (1969) Biochim Biophys Acta 188:65–77

    Google Scholar 

  • Yčas M (1972) J Mol Evol 2:17–27

    Google Scholar 

  • Yčas M (1973) J Mol Evol 2:329–338

    Google Scholar 

  • Zuckerkandl E (1975) J Mol Evol 7:1–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, O.C., Ivanov, C.P. Some evidence for the universality of structural periodicity in proteins. J Mol Evol 16, 47–68 (1980). https://doi.org/10.1007/BF01732069

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732069

Key words

Navigation