Skip to main content
Log in

Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A Ca-activated, K-selective channel from plasma membrane of rat skeletal muscle was studied in artificial lipid bilayers formed from either phosphatidylethanolamine (PE) or phosphatidylserine (PS). In PE, the single-channel conductance exhibited a complex dependence on symmetrical K+ concentration that could not be described by simple Michaelis-Menten saturation. At low K+ concentrations the channel conductance was higher in PS membranes, but approached the same conductance observed in PE above 0.4m KCl. At the same Ca2+ concentration and voltage, the probability of channel opening was significantly greater in PS than PE. The differences in the conduction and gating, observed in the two lipids, can be explained by the negative surface charge of PS compared to the neutral PE membrane. Model calculations of the expected concentrations of K+ and Ca2+ at various distances from a PS membrane surface, using Gouy-Chapman-Stern theory, suggest that the K+-conduction and Ca2+-activation sites sense a similar fraction of the surface potential, equivalent to the local electrostatic potential at a distance of 9 Å from the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apell, H.J., Bamberg, E., Läuger, P. 1979. Effects of surface charge on the conductance of the gramicidin channel.Biochim. Biophys. Acta 552:369–378

    PubMed  Google Scholar 

  • Barrett, J.N., Magleby, K.L., Pallota, B.S. 1982. Properties of single calcium-activated potassium channels in cultured rat muscle.J. Physiol. (London) 331:211–230

    Google Scholar 

  • Begenisich, T. 1975. Magnitude and location of surface charges inMyxicola giant axons.J. Gen. Physiol. 66:47–65

    Article  PubMed  Google Scholar 

  • Bell, J.E., Miller, C. 1984. Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum.Biophys. J. 45:279–287

    PubMed  Google Scholar 

  • Cecchi, X., Alvarez, O., Latorre, R. 1981. A three-barrier model for the hemocyanin channel.J. Gen. Physiol. 78:657–681

    Article  PubMed  Google Scholar 

  • Edidin, M. 1974. Rotational and translational diffusion in membranes.Annu. Rev. Biophys. Bioeng. 3:179–201

    PubMed  Google Scholar 

  • Finkelstein, A., Andersen, O.S. 1981. The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport.J. Membrane Biol. 59:155–171

    Google Scholar 

  • Fohlmeister, J.F., Adelman, W.J., Jr. 1982. Periaxonal surface calcium binding and distribution of charge on the faces of squid axon potassium channel molecules.J. Membrane Biol. 70:115–123

    Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of the squid axon.J. Physiol. (London) 137:218–244

    Google Scholar 

  • Gilbert, D.L., Ehrenstein, G. 1969. Effect of divalent cations on potassium conductance of squid axons: Determination of surface charge.Biophys. J. 9:447–463

    PubMed  Google Scholar 

  • Grahame, D. 1947. The electric double layer and the theory of electrocapillarity.Chem. Rev. 41:441–501

    Article  Google Scholar 

  • Hahin, D.T., Campbell, D.T. 1983. Simple shifts in the voltage dependence of sodium channel gating caused by divalent cations.J. Gen. Physiol. 82:785–805

    Article  PubMed  Google Scholar 

  • Hille, B., Woodhull, A.M., Shapiro, T. 1975. Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions, and pH.Philos. Trans. R. Soc. London B 270:301–318

    Google Scholar 

  • Jost, P., Griffith, O.H., Capaldi, R.A., Vanderkooi, G. 1973. Evidence for boundary lipid in membranes.Proc. Natl. Acad. Sci. USA 70:480–484

    PubMed  Google Scholar 

  • Kistler, J.R., Stroud, M., Klykowsky, M.W., Lalancette, R.A., Fairclough, R.H. 1982. Structure and function of an acetylcholine receptor.Biophys. J. 37:371–383

    PubMed  Google Scholar 

  • Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30

    Google Scholar 

  • Latorre, R., Vergara, C., Hidalgo, C. 1982. Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle.Proc. Natl. Acad. Sci. USA 79:805–809

    PubMed  Google Scholar 

  • Läuger, P., Stephan, W., Frehland, E. 1980. Fluctuations of barrier structure in ionic channels.Biochim. Biophys. Acta 602:167–180

    PubMed  Google Scholar 

  • Levitt, D.G. 1978. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions.Biophys. J. 22:209–219

    PubMed  Google Scholar 

  • Loosley-Millman, M.E., Rand, R.P., Parsegian, V.A. 1982. Effect of monovalent ion binding and screening and measured electrostatic forces between charged phospholipid bilayers.Biophys. J. 40:221–232

    PubMed  Google Scholar 

  • McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces.Curr. Top. Membr. Trans. 9:71–144

    Google Scholar 

  • McLaughlin, S., Mulrine, G.A.N., Gresalfi, T., Vaio, G., McLaughlin, A. 1981. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine.J. Gen. Physiol. 77:445–473

    Article  PubMed  Google Scholar 

  • Methfessel, C., Boheim, G. 1982. The gating of single calcium-dependent potassium channels is described by an activation-blockade mechanism.Biophys. Struct. Mech. 9:35–60

    Article  PubMed  Google Scholar 

  • Moczydlowski, E., Latorre, R. 1983a. Saxitoxin and ouabain binding activity of isolated skeletal muscle membrane as indicators of surface origin and purity.Biochim. Biophys. Acta 732:412–420

    PubMed  Google Scholar 

  • Moczydlowski, E., Latorre, R. 1983b. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayer membranes: Evidence for two voltage-dependent Ca2+ binding reactions.J. Gen. Physiol. 82:511–542

    Article  PubMed  Google Scholar 

  • Mozhayeva, G.N., Naumov, H.P. 1970. Effect of surface charge on the steady-state potassium conductance of nodal membrane.Nature (London) 228:164–165

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1969. Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions.Curr. Top. Membr. Transp. 3:157–249

    Google Scholar 

  • Thomas, D.D., Bigelow, D.J., Squier, T.C., Hidalgo, C. 1982. Rotational dynamics of proteins and boundary lipid in sarcoplasmic reticulum membrane.Biophys. J. 37:217–225

    PubMed  Google Scholar 

  • Vergara, C. 1983. Characterization of a Ca2+-activated K+ channel from skeletal muscle membranes in artificial bilayers. Ph.D. Dissertation. Harvard University Cambridge, Massachusetts

    Google Scholar 

  • Vergara, C., Latorre, R. 1983. Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar lipid bilayers: Evidence for a Ca2+ and Ba2+ blockade.J. Gen. Physiol. 82:543–568

    Article  PubMed  Google Scholar 

  • Vergara, C., Moczydlowski, E., Latorre, R. 1984. Conduction, blockade and gating in a Ca2+-activated K+ channel incorporated into planar lipid bilayers.Biophys. J. 45:73–76

    Google Scholar 

  • Warren, G.B., Toon, P.A., Birdsall, N.J.M., Lee, A.G., Meltcalfe, J.C. 1974. Reversible lipid titrations of the activity of pure adenosine triphosphatase-lipid complexes.Biochemistry 13:5501–5507

    Article  PubMed  Google Scholar 

  • Wilson, D.L., Morimoto, K., Tsuda, Y., Brown, A.M. 1983. Interaction between calcium ions and surface charge as it relates to calcium currents.J. Membrane Biol. 72:117–130

    Google Scholar 

  • Yellen, G.I. 1984. Ionic permeation and blockade in calcium-activated potassium channels of chromaffin cells. Ph.D. Dissertation. Yale University, New Haven, Connecticut

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moczydlowski, E., Alvarez, O., Vergara, C. et al. Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers. J. Membrain Biol. 83, 273–282 (1985). https://doi.org/10.1007/BF01868701

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868701

Key Words

Navigation