Skip to main content

Advertisement

Log in

Crystallinity of human pineal calcospherulites

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Crystallinity of mineral in human pineal calcospherulites was determined by electron spin resonance spectrometry after irradiation of the samples with gamma rays in a60Co-source. The radiation-induced stable paramagnetic centers in the crystalline lattice of hydroxyapatite crystals were used as a marker of the crystalline fraction and related to the total mineral content. The crystallinity of pineal sand is higher than that of compact bone. The numerical value of the crystallinity coefficient depends on both the average crystal size of hydroxyapatite and the percentage of the crystalline fraction in the total amount of mineral. Literature data show that the average size of hydroxyapatite crystals in pineal sand are smaller than in bone tissue. It is, therefore, concluded that the higher crystallinity of pineal acervuli is due to the lower percentage of the submicrocrystalline fraction in their mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krstić, R.: A combined scanning and transmission electron microscopic study of electron probe microanalysis of human pineal acervuli, Cell Tissue Res.174:129–137, 1976

    PubMed  Google Scholar 

  2. Angervall, L., Berger, S., Röckert, H.: A microradiographic and X-ray crystallographic study of calcium in the pineal body and in intracranial tumors, Acta Pathol. Microbiol. Scand.44:113–119, 1958

    Article  CAS  PubMed  Google Scholar 

  3. Earle, K.M.: X-ray diffraction and other studies of the calcareous deposits in human pineal glands, J. Neuropathol. Exp. Neurol.24:108–117, 1965

    CAS  PubMed  Google Scholar 

  4. Mabie, C.P., Wallace, B.M.: Optical, physical and chemical properties of pineal gland calcifications, Calcif. Tissue Res.16:59–71, 1974

    Article  CAS  PubMed  Google Scholar 

  5. Krstić, R., Golaz, J.: Ultrastructural and X-ray microprobe comparison of gerbil and human pineal acervuli, Experientia33:507–508, 1977

    Article  PubMed  Google Scholar 

  6. Cohen, M., Lippman, M., Chabner, B.: Role of pineal gland in aetiology and treatment of breast cancer, Lancet2:814–816, 1978

    Article  CAS  PubMed  Google Scholar 

  7. Cohen, M., Roselle, D., Chabner, B., Schmidt, T., Lippman, M.: Evidence for a cytoplasmic melatonin receptor, Nature274:894–895, 1978

    Article  CAS  PubMed  Google Scholar 

  8. Posner, A.S.: Crystal chemistry of bone mineral, Physiol. Rev.49:760–792, 1969

    CAS  PubMed  Google Scholar 

  9. Posner, A., Betts, F.: Synthetic amorphous calcium phosphate and its relation to bone mineral structure, Accounts Chem. Res.8:273–281, 1975

    Article  CAS  Google Scholar 

  10. Quinaux, N.: Doctoral Thesis, University of Liége, Liége, 1968

    Google Scholar 

  11. Houben, J.L.: Free radicals produced by ionizing radiation in bone and its constituents, Int. J. Radiat. Biol.20:373–389, 1971

    CAS  Google Scholar 

  12. Ostrowski, K., Dziedzic-Goclawska, A., Stachowicz, W., Michalik, J.: Sensitivity of the electron spin resonance technique as applied in histochemical research on normal and pathological calcified tissues, Histochemie32:343–351, 1972

    Article  CAS  PubMed  Google Scholar 

  13. Ostrowski, K., Dziedzic-Goclawska, A., Stachowicz, W., Michalik, J.: Accuracy, sensitivity and specificity of electron spin resonance analysis of mineral constituents of irradiated tissues, Ann. N.Y. Acad. Sci.238:186–201, 1974

    CAS  PubMed  Google Scholar 

  14. Ostrowski, K., Dziedzic-Goclawska, A.: Electron spin resonance spectrometry in investigations on mineralized tissues. In G.H. Bourne (ed.): The Biochemistry and Physiology of Bone, 2nd edition, vol. 4, pp. 303–327, Academic Press, New York, 1976

    Google Scholar 

  15. Ostrowski, K., Dziedzic-Goclawska, A., Stachowicz, W.: Stable radiation induced paramagnetic entities in tissue mineral. In W.A. Pryor (ed.): Free Radicals in Biology, vol. 4 (in press). Academic Press, New York, 1980

    Google Scholar 

  16. Michalik, J.: Electron spin resonance studies of gamma irradiated biological and synthetic hydroxyapatites (in Polish). Doctoral Thesis, Institute of Nuclear Research, Warsaw, 1975

    Google Scholar 

  17. Jackson, S.A., Cartwright, A.G., Lewis, D.: The morphology of bone mineral crystals, Calcif. Tissue Res.25:217–222, 1978

    Article  CAS  PubMed  Google Scholar 

  18. Armstrong, M.D., Singer, L.: Composition and constitution of the mineral phase of bone, Clin. Orthop. Rel. Res.38:178–190, 1967

    Google Scholar 

  19. Dallemagne, M.J., Richelle, L.J.: Inorganic chemistry of bone, In I. Zipkin (ed.): Biological Mineralization, pp. 23–42. John Wiley & Sons, New York, 1973

    Google Scholar 

  20. Frank, R.M.: Electron microscopy of the dental hard tissues. In I. Zipkin (ed.): Biological Mineralization, pp. 413–432. John Wiley & Sons, New York, 1973

    Google Scholar 

  21. Serway, R.A., Marshall, S.A.: Electron spin resonance absorption spectra of CO3 −1 and CO3 −3 molecule ions in irradiated single crystal calcite, J. Chem. Physics46:1949–1952, 1967

    Article  CAS  Google Scholar 

  22. Glinskaya, L.G., Shteherbakova, M.J., Zanin, J.N.: Carbon in apatite structure as studied by esr technique, Crystallographia15:1164–1167, 1970 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrowski, K., Dziedzic-Goclawska, A., Michalik, J. et al. Crystallinity of human pineal calcospherulites. Calcif Tissue Int 30, 179–182 (1980). https://doi.org/10.1007/BF02408625

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02408625

Key words

Navigation