Skip to main content
Log in

Microautoradiographic detection of CO2 fixation in lenticel chlorenchyma of youngFraxinus excelsior L. stems in early spring

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Microautoradiography indicated that 1-year-oldFraxinus excelsior L. stem chlorenchyma assimilated external14CO2 in mid-April, when buds were swollen, but before bud-break. The lenticel regions showed the highest amount of radioactively labeled assimilates. Labeled assimilates declined in the tangential direction with increasing distance from lenticels, suggesting that14CO2 entered the stem through the open intercellular spaces of lenticels. In the radial direction, the amount of radioactively labeled assimilates did not constantly decline with growing distance from the lenticel entrance. It was high in all lenticel phelloderm cells, which had high chlorophyll autofluorescence and very small starch grains, highest in the adjacent 4–6 rows of chlorenchyma, which had larger starch grains that increased in size towards the interior rows, and much lower in the inner cortex chlorenchyma, which had large starch grains. We suggest that the main function of the lenticel chlorenchyma (lenticel phelloderm plus 4–6 rows of adjacent cortex chlorenchyma) is the refixation of respiratory CO2 which could easily leave the stem intercellular spaces, rather than the fixation of external CO2. The lenticel chlorenchyma could reduce the loss of respiratory CO2 by its photosynthetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buchel HB, Grosse W (1990) Localization of the porous partition responsible for pressurized gas transport inAlnus glutinosa (L.) Gaertn. Tree Physiol 6: 247–256

    PubMed  Google Scholar 

  • Chalk L (1930) The formation of spring and summer wood in ash and douglas fir. Oxford For Mem 10: 8–20, 36–44

    Google Scholar 

  • Fritz E (1980) Microautoradiographic localization of assimilates in phloem: problems and new method. Ber Dtsch Bot Ges 93: 109–121

    Google Scholar 

  • Geurten I (1950) Untersuchungen über den Gaswechsel von Baumrinden. Forstw Cbl 69: 704–743

    Article  Google Scholar 

  • Grossman YL, Dejong TM (1994) Carbohydrate requirements for dark respiration by peach vegetative organs. Tree Physiol 14: 37–48

    PubMed  Google Scholar 

  • Herrmann E (1987) Chlorophyllverteilung in Sproβachsen einheimischer Laubgehölze. Diplomarbeit des Forstwissenschaftlichen Fachbereichs. Universität Göttingen

  • Jacob A, Lehmann H, Stelzer R (1989) Entwicklung und Struktur von Lentizellen der Buche (Fagus sylvatica f.purpurea Ait.). Flora 183: 417–427

    Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. WH Freemann, San Francisco

    Google Scholar 

  • Klebahn (1884) Die Rindenporen Jenaische Z Med Naturwiss 17: 537–591

    Google Scholar 

  • Kohlert F (1925) Untersuchungen über die Lenticellen. Bot Arch 10: 291–334

    Google Scholar 

  • Langenfeld-Heyser R (1989) CO2 fixation in stem slices ofPicea abies (L.) Karst.: microautoradiographic studies. Trees 3: 24–32

    Article  Google Scholar 

  • Langenfeld-Heyser R, Ebrahim-Nesbat F (1991) CO2 fixation and assimilate transport in the stem ofPicea abies (L.) Karst. In: Edelin C (ed) L'arbre. Biologie et developpement. 2nd international tree conference, Montpellier 1990. Nat Monspel, pp 628–629

  • Larsen P (1936) Regenerierende Kohlensäureassimilation bei Eschen-ästen. Forstl Forsoegsvaes Dan 14: 13–52

    Google Scholar 

  • Müller D (1924) Studies on traumatic stimulus and loss of dry matter by respiration in branches from Danish forest trees. Dansk Bot Arkiv 4: 1 -33

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17: 208–212

    Article  PubMed  Google Scholar 

  • Schönherr J, Ziegler H (1980) Water permeability ofBetula periderm. Planta 147: 345–354

    Article  Google Scholar 

  • Speck F (1992) Untersuchungen zum Jahresverlauf der Photosynthese an einjährigen Sproβachsen vonFraxinus excelsior L. Diplomarbeit des Forstwissenschaftlichen Fachbereichs, Universität Göttingen

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    Article  PubMed  Google Scholar 

  • Szujko-Lacza J, Fekete G, Faludi-Daniel A (1970) Contributions to the conditions of photosynthetic activity of lignifying shoot axes. Acta Bot Acad Sci Hung 16: 393–404

    Google Scholar 

  • Wutz A (1955) Anatomische Untersuchungen über System und periodische Veränderungen der Lenticellen. Bot Stud 4: 43–72

    Google Scholar 

  • Ziegler H (1957) Über den Gaswechsel verholzter Achsen. Flora 144: 229–250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langenfeld-Heyser, R., Schella, B., Buschmann, K. et al. Microautoradiographic detection of CO2 fixation in lenticel chlorenchyma of youngFraxinus excelsior L. stems in early spring. Trees 10, 255–260 (1996). https://doi.org/10.1007/BF02185677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02185677

Key words

Navigation