Skip to main content
Log in

Neurohormones in the intercellular clefts and in glia-like cells of the rat brain

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

With the aid of electron microscopic immunocytochemistry following the application of antisera against somatostatin and luliberin (LRF), a labeling of the intercellular clefts in different areas of the brain was observed. This labeling is especially conspicuous near the basal pole of the cuboidal ependymal cells, but is also generally present in all regions containing neurohormone-producing perikarya or their processes (for example, the preoptic area, the basal ganglia and the cortex).

Furthermore, in all these regions displaying labeled intercellular clefts, glialike cells and sparsely ciliated ependymal cells are found, the secondary lysosomes of which exhibit an immunoreactivity resembling that observed in the intercellular clefts.

As sources of the immunoreactive material the following possibilities are discussed: (i) perikarya producing somatostatin or LRF, situated in the wall of the third ventricle and sending fibers between the cuboidal ependymal cells, (ii) hypothalamic and extrahypothalamic projections of both peptidergic systems, and (iii) in the case of somatostatin, immunoreactive perikarya in the cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arimura A, Lundqvist G, Rothman J, Chang R, Fernandez-Durango R, Elde R, Coy OH, Meyers C, Schally AV (1978) Radioimmunoassay of somatostatin. Metabolism 27:1135–1144

    Google Scholar 

  • Bargmann W, Hild W, Ortmann R, Schiebler ThH (1950) Morphologische und experimentelle Untersuchungen über das hypothalamisch-hypophysäre System. Acta Neuroveg (Wien) 1: 233–273

    Google Scholar 

  • Barry J (1954) Neurosécrétion hypothalamique de substance colloide chez le rat blanc et la souris blanche. CR Soc Biol (Paris) 248:501–563

    Google Scholar 

  • Brazeau P, Epelbaum J, Shaffer-Tannenbaum G, Rorstad O, Martin JB (1978) Somatostatin: Isolation, characterization, distribution and blood determination. Metabolism 27:1133–1138

    Google Scholar 

  • Brightman MW (1965a) The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J Cell Biol 40:99–123

    Google Scholar 

  • Brightman MW (1965b) The distribution within the brain of ferritin injected into the cerebrospinal fluid compartments. II. Parenchymal distribution. Am J Anat 117:193–220

    Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Google Scholar 

  • Brightman MW, Shivers RR, Prescott L (1975) Morphology of the walls around fluid compartments in nervous tissue. In: Cserr HF, Fenstermacher JD, Fencl V (eds) Fluid environment of the brain. Academic Press, New York San Francisco London, pp 3–15

    Google Scholar 

  • Brownstein M, Arimura A, Sato H, Schally AV, Kizer JS (1975) The regional distribution of somatostatin in the rat brain. Endocrinology 96:1456–1461

    Google Scholar 

  • Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192:423–435

    Google Scholar 

  • Buijs RM, Swaab DF, Dogterom J, van Leeuwen FW (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186:423–433

    Google Scholar 

  • Carmel PW, Araki S, Ferin M (1976) Pituitary stalk portal blood collection in rhesus monkeys: evidence for pulsatile release of gonadotropin-releasing hormone (GnRH). Endocrinology 99:243–248

    Google Scholar 

  • Cramer OM, Barraclough CA (1975) Failure to detect luteinizing hormone-releasing hormone in third ventricle cerebral spinal fluid under avariety of experimental conditions. Endocrinology 96:913–921

    Google Scholar 

  • Cserr HF, Ostrach LH (1974) Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp Neurol 45:50–60

    Google Scholar 

  • Cserr HF, Fenstermacher JD, Fencl V (eds) (1975) Fluid environment of the brain. Academic Press, New York San Francisco London

    Google Scholar 

  • Davson H (1967) Physiology of the cerebrospinal fluid, Little Brown, Boston

    Google Scholar 

  • Dellmann HD (1973) Degeneration and regeneration of neurosecretory systems. Int Rev Cytol 36:215–315

    Google Scholar 

  • Dermietzel R (1975) Junctions in the central nervous system of the cat. IV Interendothelial junctions of cerebral blood vessels from selected areas of the brain. Cell Tissue Res 164:45–62

    Google Scholar 

  • Desaga U (1972) Form und Verteilung subependymaler Basalmembranlabyrinthe am Ventrikelsystem der Ratte. Z Zellforsch 132:553–562

    Google Scholar 

  • Dogterom J, van Wimersma Greidanus TjB, Swaab DF (1977) Evidence for the release of vasopressin and oxytocin into cerebrospinal fluid: measurements in plasma and CFS of intact and hypophysectomized rats. Neuroendocrinology 24:108–118

    Google Scholar 

  • Epelbaum J, Brazeau P, Tsang D, Brawer J, Martin JB (1977) Subcellular distribution of radioimmunoassayable somatostatin in rat brain. Brain Res 126:309–323

    Google Scholar 

  • Epelbaum J, Arancibia LT, Kordon C, Ottersen OP, Ben-Ari Y (1979) Regional distribution of somatostatin within the amygdaloid complex of the rat brain. Brain Res 174:172–174

    Google Scholar 

  • Greenberg R, Whalley CE, Jourdikian F, Mendelson IS, Walter R, Nikolics K, Coy DH, Schally AV, Kastin AJ (1976) Peptides readily penetrate the blood-brain barrier: Uptake of peptides by synaptosomes is passive. Pharmacol Biochem Behav 5, Suppl 1, 151–158

    Google Scholar 

  • Heller H, Hasan SH, Saifi AQ (1968) Antidiuretic activity in the cerebrospinal fluid. J Endocrinol 41:273–280

    Google Scholar 

  • Ishikawa H (1973) Study on the existence of TRH in the cerebrospinal fluid in humans. Biochem Biophys Res Commun 54:1203–1209

    Google Scholar 

  • Joseph SA, Sorrentino S jr, Sundberg DK (1975) Releasing hormones, LRF and TRF, in the cerebrospinal fluid of the third ventricle. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds) Brain-endocrine interaction II. The ventricular system in neuroendocrine mechanisms. Int Symp Shizuoka 1974. Karger, Basel, pp 306–312

    Google Scholar 

  • Kastin AJ, Nissen C, Schally AV, Coy DH (1976) Blood-brain barrier, half-time disappearance, and brain distribution for labeled enkephalin and a potent analog. Brain Res Bull 1:583–589

    Google Scholar 

  • Knigge KM, Joseph SA (1974) Thyrotropin releasing factor (TRF) in CSF of third ventricle of rat brain. Acta Endocrinol (Kbh) 76:209–213

    Google Scholar 

  • Krisch B (1978) Hypothalamic and extrahypothalamic distribution of somatostatin-immunoreactive elements in the rat brain. Cell Tissue Res 195:499–513

    Google Scholar 

  • Krisch B (1980a) Immunocytochemistry of neuroendocrine systems (vasopressin, somatostatin, luliberin) Prog Histochem Cytochem Vol 13/2 pp 1–166

    Google Scholar 

  • Krisch B (1980b) Differing somatostatin-immunoreactivities in the cortex and the hypothalamus of the rat. A light and electron microscopic study. Cell Tissue Res (Submitted for publication)

  • Krisch B (1980c) Two types of luliberin-immunoreactive perikarya in the preoptic area of the rat. Cell Tissue Res (Submitted for publication)

  • Krisch B, Leonhardt H (1980a) An intermittent somatostatin-immunoreactivity in the cortex and basal ganglia of the rat. Cell Tissue Res 205:327–331

    Google Scholar 

  • Krisch B, Leonhardt H (1980b) Luliberin and somatostatin fiber-terminals in the subfornical organ of the rat. Cell Tissue Res (In press)

  • Krisch B, Leonhardt H, Buchheim W (1978a) The functional and structural border of the neurohemal region of the median eminence. Cell Tissue Res 192:327–339

    Google Scholar 

  • Krisch B, Leonhardt H, Buchheim W (1978b) The functional and structural border between liquor- and blood-milieu of circumventricular organs. Studies on the organum vasculosum laminae terminalis, the subfornical organ and the area postrema. Cell Tissue Res 195:485–497

    Google Scholar 

  • Landgraf R, Ermisch A, Heß J (1979) Indications for a brain uptake of labelled vasopressin and oxytocin and the problem of the blood-brain barrier. Endocrinology 73:77–81

    Google Scholar 

  • Leonhardt H (1970) Zur Frage der ventrikulären “gomoripositiven” Neurosekretion. In: Bargmann W, Scharrer B (Hrsg) Aspects of neuroendocrinology. Springer, Berlin Heidelberg New York, S 338–348

    Google Scholar 

  • Leonhardt H (1973) Über elektronenmikroskopische Unterschiede zwischen den subependymalen Basalmembranlabyrinthen von Mensch, Ratte und Kaninchen. Anat Anz 135:605–607

    Google Scholar 

  • Leonhardt H (1980) Ependym und circumventriculäre Organe. In: Oksche A, Vollrath L (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen BdIV/10. Springer, Berlin Heidelberg New York, S. 177–666

    Google Scholar 

  • Leonhardt H, Desaga U (1975) Recent observations on ependyma and subependymal basement membranes. Acta Neurochir (Wien) 31:153–159

    Google Scholar 

  • Nakai Y, Ochiai H, Uchida M (1975) Freeze-etch observations on arachnoid and ependyma in the median eminence. 10th Int Congr Anat Tokyo, p 261

  • Nilaver G, Zimmerman EA, Wilkins J, Michaels J, Huffman D, Silverman A-J (1980) Magnocellular hypothalamic projections to the lower brain stem and spinal cord of the rat. Neuroendocrinology 30:150–158

    Google Scholar 

  • Noda H, Sano Y, Nakamoto T (1955) Über den Eintritt des hypothalamischen Neurosekrets in den dritten Ventrikel. Arch Histol Jpn 8:355–359

    Google Scholar 

  • Patel YC, Rao K, Reichlin S (1977) Somatostatin in human cerebrospinal fluid. New Engl J Med 296:529–533

    Google Scholar 

  • Scharrer E, Scharrer B (1954) Neurosecretion. In: v Möllendorff W, Bargmann W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen Bd VI/5. Springer, Berlin Göttingen Heidelberg, S 853–1066

    Google Scholar 

  • Schwarzberg H, Miehlke B, Schulz H, Unger H (1977) Der Einfluß von Narkose, Jahreszeit und Geburtsvorgang auf die Oxytocinaktivität des Liquor cerebrospinalis von Kaninchen. In: Sterba G, Bargmann W (Hrsg) Circumventriculäre Organe. Leopoldina-Symp Schloß Reinhardsbrunn 1975. Nova Acta Leopoldina Suppl 9. Deutsche Akademie der Naturforscher, Halle, S 229–234

    Google Scholar 

  • Silverman AJ, Krey LC (1978) The luteinizing hormone-releasing hormone (LH-RH) neuronal networks of the guinea pig brain. I. Intra- and extra-hypothalamic projections. Brain Res 157:233–246

    Google Scholar 

  • Sofroniew MV, Weindl A (1978) Extrahypothalamic neurophysin-containing perikarya, fiber pathways and fiber clusters in the rat brain. Endocrinology 102:334–337

    Google Scholar 

  • Sterba G (1974) Cerebrospinal fluid and hormones. In: Mitro A (ed) Ependyma and neurohormonal regulation. Int Symp Smolenice 1972. Veda, Bratislava, pp 143–179

    Google Scholar 

  • Sterba G, Brückner G (1967) Zur Funktion der ependymalen Glia in der Neurohypophyse. Z Zellforsch 81:457–473

    Google Scholar 

  • Sterba G, Brückner G (1969) Elektronenmikroskopische Untersuchungen über die Reaktion der Pituicyten nach Hypophysenstieldurchtrennung bei Rana esculenta. Z Zellforsch 93:74–83

    Google Scholar 

  • Sternberger LA (1974) Immunocytochemistry. Foundation of immunology series. Osler A, Weis L (eds) Prentice Hall Inc, Englewood Cliffs, New Jersey

    Google Scholar 

  • Tani E, Ikeda K, Nishiura M, Higashi N (1974) Spezialized intercellular junctions and ciliary necklace in rat brain. Cell Tissue Res 151:57–68

    Google Scholar 

  • Tani E, Yamagata S, Ito Y (1977) Freeze-fracture of capillary endothelium in rat brain. Cell Tissue Res 176:157–165

    Google Scholar 

  • Unger H, Schwarzberg H, Schulz H (1974) The vasopressin and oxytocin content in the cerebrospinal fluid of rabbits under changed conditions. In: Mitro A (ed) Ependyma and neurohormonal regulation. Int Symp Smolenice 1972. Veda, Bratislava, pp 251–259

    Google Scholar 

  • Vandesande F, Dierickx K (1975) Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tissue Res 164:153–162

    Google Scholar 

  • Vorherr H, Bradbury MWB, Hoghoughi M, Kleeman CR (1968) Antiduretic hormone in cerebrospinal fluid during endogenous and exogenous changes in its blood level. Endocrinology 83:246–250

    Google Scholar 

  • Wagner HJ, Pilgrim C, Brandl J (1974) Penetration and removal of horseradish peroxidase injected into the cerebrospinal fluid: Role of cerebral perivascular spaces, endothelium and microglia. Acta Neuropathol (Berl) 27:299–315

    Google Scholar 

  • Weindl A, Joynt RJ (1972) The median eminence as a circumventricular organ. In: Knigge KM, Scott DE, Weindl A (eds) Brain-endocrine interaction. Median eminence: structure and function. Int Symp Munich 1971. Karger, Basel, pp 280–297

    Google Scholar 

  • Weiner RJ, Blake CA, Rubinstein L, Sawyer CH (1971) Electrical activity of the hypothalamus: effects of intraventricular catecholamines. Science 171:411–412

    Google Scholar 

  • Wied D de, Bohus B, Wimersma Greidanus TjB van (1975) Memory deficit in rats with hereditary diabetes insipidus. Brain Res 85:152–156

    Google Scholar 

  • Wimersma Greidanus TjB van (1979) Neuropeptides and avoidance behavior; with special references to the effects of vasopressin, ACTH, and MSH on memory processes. In: Collu R, Barbeau A, Ducharme JR, Rochefort J-G (eds) Central nervous system effects of hypothalamic hormones and other peptides. Raven Press, New York, pp 177–187

    Google Scholar 

  • Wimersma Greidanus TjB van, Bohus B, Wied D de (1975) CNS sites of action of ACTH, MSH and vasopressin, related to avoidance behavior. In: Stumpf WE, Grant LD (eds) Anatomical neuroendocrinology. Proc conference on neurobiology of CNS-hormone interactions Chapel Hill. Karger, Basel, pp 284–289

    Google Scholar 

  • Wittkowski W (1968) Elektronenmikroskopische Studien zur intraventriculären Neurosekretion in den Recessus infundibularis der Maus. Z Zellforsch 92:207–216

    Google Scholar 

  • Wittkowski W (1973) Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie des tubero-hypophys:aren Systems der Ratte. Z Zellforsch 139:101–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Walter Kirsche on the occasion of his 60th birthday

Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr 569/3) and Stiftung Volkswagenwerk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krisch, B., Leonhardt, H. Neurohormones in the intercellular clefts and in glia-like cells of the rat brain. Cell Tissue Res. 211, 251–268 (1980). https://doi.org/10.1007/BF00236448

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236448

Key words

Navigation