Skip to main content
Log in

Development of the nitrogen fixing apparatus in the legumes, Centrosema pubescens Benth., and Vigna unguiculata L. Walp.

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The sequence of events leading up to the establishment of symbiotic nitrogen-fixation were studied in two tropical legumes, Centrosema pubescens Benth, and Vigna unguiculata L. Walp. Parameters measured included fresh and dry weights, chlorophyll and leghaemoglobin contents, as well as the activities of NADH-nitrate reductase (EC 1.6.6.1), and nitrogenase (nitric-oxide reductase-EC 1.7.99.2) in plants that were inoculated with suitable rhizobia or which were watered with potassium nitrate. Dry weight and photosynthetic activity of both species followed the sigmoidal pattern which is characteristic of most plants. Growth was little different in either a qualitative or quantitative sense whether nitrogen was supplied as nitrate or through dinitrogen fixation. Although the biochemical sequence of events was dependent on the limiting sensitivities of the individual assays used, the data suggest that nitrate reductase is the first measurable enzymatic activity in the nodules (and roots), followed by acetylene reduction and leghaemoglobin in that order. It is possible therefore, that low levels of symbiotic nitrogen fixation occur in the nodules in the absence of leghaemoglobin. Nitrate reductase activity in C. pubescens nodules was negatively exponentially correlated with nitrogenase activity of the same nodules, suggesting a changing metabolism in old nodules. These data are discussed in terms of environmental and physical factors known to control nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleby, C.A.: Leghaemoglobin. In: The biology of nitrogen fixation, pp. 521–554. A Quispel ed., Amsterdam: Elsevier 1974

    Google Scholar 

  • Appleby, C.A., Bergersen, F.J., Macnicol, P.K., Turner, G.L., Wittenberg, B.A., Wittenberg, J.B.: Role of leghaemoglobin in symbiotic nitrogen fixation. In: Proc. 1st Int. Symp. on Nitrogen Fixation, pp. 274–292. Newton, W.E., Nyman, C.J., eds. Washington State Univ. Press, Pullman, 1976

    Google Scholar 

  • Beevers, L., Hageman, R.H.: Nitrate reduction in higher plants. Ann. Rev. Plant Physiol. 20, 495–522 (1969)

    Article  Google Scholar 

  • Bergersen, F.J., Goodchild, D.J.: Cellular location and concentration of leghaemoglobin in soybean root nodles. Aust. J. Biol. Sci. 26, 741–756 (1973)

    Google Scholar 

  • Broughton, W.J., Dilworth, M.J.: Control of leghaemoglobin synthesis in snake beans. Biochem. J. 125, 1075–1080 (1971)

    Google Scholar 

  • Broughton, W.J., Dilworth, M.J.: Amino acid composition and relationships of lupin and serradella leghaemoglobins. Biochim. Biophys. Acta 317, 266–276 (1973)

    Google Scholar 

  • Broughton, W.J., John, C.K.: Rhizobial experimentation and supply in Malaysia-1927 to 1976. In: Soil microbiology and plant nutrition, Broughton, W.J., John, C.K., Rajarao, J.C., Lim, B., eds. Kuala Lumpur: University of Malaya Press 1977 (in press)

    Google Scholar 

  • Broughton, W.J., Parker, C.A.: Microbial contributions to world nitrogen economy. In: Global impacts of applied microbiology-state of the art, 1976. Stanton, W.R., DaSilva, E.J., eds. Kuala Lumpur: University of Malaya Press 1977 (in press)

    Google Scholar 

  • Burns, R.C., Hardy, R.W.F.: Nitrogen fixation in bacteria and higher plants, p. 189. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Cheniae, G., Evans, H.J.: Physiological studies on nodule-nitrate reductase. Plant Physiol. 35, 454–462 (1960)

    Google Scholar 

  • Coventry, D.R., Trinick, M.J., Appleby, C.A.: A search for a leghaemoglobin-like compound in root nodules of Trema cannabina Lour. Biochim. Biophys. Acta. 420, 105–111 (1976)

    Google Scholar 

  • Dart, P.J.: Development of root-nodule symbioses. I. The infection process. In: The biology of nitrogen fixation, pp. 381–429. Quispel, A., ed., Amsterdam: Elsevier 1974

    Google Scholar 

  • Dart, P.J., Huxley, P.A., Eaglesham, A.R.J., Minchin, F.R., Summerfield, R.J., Day, J.M.: Nitrogen nutrition of cowpea (Vigna unguiculata) II. Effects of short-term applications of inorganic nitrogen on growth and yield of nodulated and non-nodulated plants. Exp. Agric. 13, 241–252 (1977)

    Google Scholar 

  • Dart, P.J., Mercer, F.V.: The effect of growth temperature, level of ammnoium nitrate, and light intensity on the growth and nodulation of cowpea (Vigna sinensis Endl. ex. Hassk.). Aust. J. Agric. Res. 16, 321–345 (1965)

    Google Scholar 

  • Dart, P.J., Pate, J.S.: Nodulation studies in legumes. III. The effects of delaying inoculation on the seedling symbiosis of barrel medic, Medicago tribuloides Desv. Aust. J. Biol. Sci. 12, 427–444 (1959)

    Google Scholar 

  • Diatloff, A., Ferguson, J.E.: Nodule number, time to nodulation and its effectiveness in eleven accessions of Glycine wightii. Tropical Grassl. 4, 223–228 (1970)

    Google Scholar 

  • Dilworth, M.J.: Dinitrogen fixation. Ann. Rev. Plant Physiol. 25, 81–114 (1974)

    Google Scholar 

  • Dilworth, M.J., Williams, D.C.: Nucleic acid changes in bacteriods of Rhizobium lupini during nodule development. J. Gen. Microbiol. 48, 31–36 (1967)

    Google Scholar 

  • Evans, H.J.: Diphosphopyridine nucleotide-nitrate reductase from soybean nodules. Plant Physiol 28, 298–301 (1953)

    Google Scholar 

  • Ezedinma, F.O.C.: Effects of inoculation with local isolates of cowpea Rhizobium and application of nitrate nitrogen on the development of cowpeas. Tropical Agric. 41, 243–249 (1964)

    Google Scholar 

  • Gibson, A.H.: The carbohydrate requirements for symbiotic nitrogen fixation: a “whole-plant” growth analysis approach. Aust. J. Biol. Sci. 19, 499–515 (1966)

    Google Scholar 

  • Gibson, A.H.: Physical environment and symbiotic nitrogen fixation. VI. Nitrogen retention within the nodules of Trifolium subterraneum L. Aust. J. Biol. Sci. 22, 829–838 (1969)

    Google Scholar 

  • Gibson, A.H.: Limitation to dinitrogen fixation by legumes. In: Proc. 1st Int. Symposium in Nitrogen Fixation, pp. 400–428. Newton, W.E., Nyman, C.J., eds. Pullman Washington State University Press, Pullman 1976

    Google Scholar 

  • Gibson, A.H.: The energy requirements of symbiotic nitrogen fixation. In: Soil microbiology and plant nutrition. Broughton, W.J., John, C.K., Rajarao, J.C., Lim, B., eds. Kuala Lumpur: University of Malaya Press 1977 (in press)

    Google Scholar 

  • Gornall, A.G., Bardawill, C.J., and David, M.N. Determination of serum proteins by means of the biuret reaction. J. biol. Chem. 177, 751–766 (1949)

    Google Scholar 

  • Hardy, R.W.F., Burns, R.C., Holsten, R.D.; Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5, 47–81 (1973)

    Google Scholar 

  • Harper, J.E., Nicholas, J.C., Hageman, R.H.: Seasonal and canopy variation in nitrate reductase activity of soybean, (Glycine max) varieties. Crop Sci. 12, 382–386 (1972)

    Google Scholar 

  • Holden, M.: Chlorophylls. In: Chemistry and biochemistry of plant pigments. Vol. II, p. 1–37. Goodwin, T.W., ed. New York: Academic Press 1976

    Google Scholar 

  • Kadam, S.S., Gandhi, A.P., Sawhney, S.K., Naik, M.S.: Inhibitor of nitrate reductase in the roots of rice seedlings and its effect on the enzyme activity in the presence of NADH. Biochim. Biophys. Acta 350, 162–170 (1974)

    Google Scholar 

  • Kondorosi, A., Barabás, I., Sváb, Z., Orosz, L., Sik, T., Hotchkiss, R.P.: Evidence for common genetic determinats of nitrogenase and nitrate reductase in Rhizobium meliloti. Nature New Biol. 246, 153–154 (1973)

    Google Scholar 

  • Lie, T.A., Soe-Agnie, I.E., Muller, G.J.L., Goktan, D.: Environmental control of symbiotic nitrogen fixation: limitations to and flexibility of the legume/Rhizobium system. In: Soil microbiology and plant nutrition. Broughton, W.J., John, C.K., Rajaro, J.C., Lim, B., eds. Kuala Lumpur: University of Malaya Press 1977 (in press)

    Google Scholar 

  • Loomis, W.D., Battaile, J.: Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 5, 423–438 (1966)

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    PubMed  Google Scholar 

  • Mancini, O., Carbonara, A.O., Heremans, J.F.: Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochem. 2, 235–254 (1965)

    Google Scholar 

  • Milthorpe, F.L., Moorby, J.: An Introduction to Crop Physiology. p. 202, London: Cambridge University Press 1974

    Google Scholar 

  • Nash, D.T., and Schulman, H.M. Leghaemoglobins and nitrogenase activity during soybean root nodule development. Can. J. Bot. 54, 2490–2797 (1976)

    Google Scholar 

  • Nason, A., Lee, K.Y., Pan, S.S., Ketchum, P.A., Lamberti, A., Vries, J., De: In vitro formation of assimilatory reduced nicotinamide adenine dinucleotide phosphate: nitrate reductase from a Neurospora mutant and a component of molybdenum enzymes. Proc. Natl. Acad. Sci., USA 68, 3242–3246 (1971)

    Google Scholar 

  • Nicholas, D.B., Haydock, K.P.: Variation in growth and nodulation of Glycine wightii under controlled environment. Aust. J. Agric. Res. 22, 223–230 (1971)

    Google Scholar 

  • Nutman, P.S.: Physiological studies on nodule formation. II. Influence of delayed inoculation on the rate of nodulation in red clover. Ann. Bot. 13, 261–283 (1949)

    Google Scholar 

  • Oghoghorie, C.G.O., Pate, J.S.: The nitrate stress syndrome of the nodulated field pea (Pisum arvense L.) Techniques for measurement and evaluation in physiological terms. In: Biological nitrogen fixation in natural and agricultural habitats, pp. 185–202. Lie, T.A., Mulder, E.G., eds. Plant & Soil Special Volume 1971

  • Padmanabhan, S., Broughton, W.J.: Serology of Malaysian rhizobia. In: Soil microbiology and plant nutrition. Broughton, W.J., John, C.K., Rajarao, J.C., Lim, B., eds. Kuala Lumpur: University of Malaya Press 1977 (in press)

    Google Scholar 

  • Pan, S.S., Erickson, R.H., Lee, K.Y., Nason, A.: Molybdenum-containing component shared by the molybdenum enzymes and indicated by the in vitro assembly of assimilatory nitrate reductase using the Neurospora mutant nit-1. In: Proc. 1st Int. Symp. Nitrogen Fixation. p. 293–311. Newton, W.E., Nyman, J., eds. Pullman: Washington State University Press, Pullman 1976

    Google Scholar 

  • Parker, C.A., Grove, P.L.: The rapid serological identification of rhizobia in small nodules. J. appl. Bact. 33, 248–252 (1970)

    Google Scholar 

  • Paul, K.G., Theorell, A., Åkeson, A.: The molar light absorption of pyridine ferroprotoporphyrin (pyridine hemochromogen). Acta Chem. Scand. 7, 1284–1287 (1953)

    Google Scholar 

  • Robertson, J.G., Farnden, K.J.F., Warburton, M.P., Banks, J.M.: Induction of glutamine synthetase during nodule development in lupin. Aust. J. Plant Physiol. 2, 265–272 (1975)

    Google Scholar 

  • Schrader, L.E., Cataldo, D.A., Peterson, D.M.: Use of protein in extraction and stabilization of nitrate reductase. Plant Physiol. 53, 688–690 (1974)

    Google Scholar 

  • Solomonson, L.P., Spehar, A.M.: Model for the regulation of nitrate assimilation. Nature 265, 373–375 (1977)

    Google Scholar 

  • Strain, H.H., Svec, W.A.: Extraction separation, estimation and isolation of the chlorophylls. In: The chlorophylls. pp. 21–66. Vernon, L.P., Seely, G.R., eds. New York: Academic Press 1966

    Google Scholar 

  • Summerfield, R.J., Huxley, P.A., Dart, P.J., Hughes, A.P.: Some effects of environmental stress on seed yield of cowpea (Vigna unguiculata (L) Walp.) cv. Prime. Plant and Soil 44, 527–546 (1976)

    Google Scholar 

  • Summerfield, R.J., Dart, P.J., Huxley, P.A., Eaglesham, A.R.J., Minchin, F.R., Day, J.M.: Nitrogen nutrition of cowpea (Vigna unguiculata). I. Effects of applied nitrogen and symbiotic nitrogen fixation on growth and yield. Exp. Agric. 13, 129–142 (1977)

    Google Scholar 

  • Trinick, M.J.: Symbiosis between Rhizobium and the non-legume, Trema aspera. Nature 244, 459–460 (1973)

    Google Scholar 

  • Wallace, W.: Purification and properties of a nitrate reductase-inactivating enzyme. Biochim. Biophys. Acta 341, 265–276 (1974)

    Google Scholar 

  • Wallace, W., Pate, J.S.: Nitrate reductase in the field pea (Pisum arvense L.) Ann. Bot. 29, 655–671 (1965)

    Google Scholar 

  • Wallace, W., Pate, J.S.: Nitrate assimilation in higher plants with special references to the cockle bur (Xanthium pennsylvanicum Wallr.). Ann. Bot. 31, 213–228 (1967)

    Google Scholar 

  • Williams, W.M., Broughton, W.J.: Measurement of acetylene reduction in various systems. In: Soil microbiology and plant nutrition. Broughton, W.J., John, C.K., Rajarao, J.C., Lim, B., eds. Kuala Lumpur: University of Malaya Press 1977 (in press)

    Chapter  PubMed  Google Scholar 

  • Williams, W.M., Broughton, W.J.: Acetylene reduction in some tropical legumes. Planta (1978) (in preparation)

  • Wilson, J.R.: Comparative nodulation, nitrogen fixation, and growth of Glycine wightii cv. Cooper and Phaseolus atropurpureus cv. Siratro seedlings. Aust. J. agric. Res. 23, 1–8 (1972)

    Google Scholar 

  • Wray, J.L., Filner, P.: Structural and functional relationships of enzyme activities induced by nitrate in barley. Biochem. J. 119, 715–725 (1970)

    Google Scholar 

  • Gibson, A.H.: The carbohydrate requirements for symbiotic nitrogen fixation: a “whole-plant” growth analysis approach. Aust. J. Biol. Sci. 19, 499–515 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broughton, W.J., Hoh, C.H., Behm, C.A. et al. Development of the nitrogen fixing apparatus in the legumes, Centrosema pubescens Benth., and Vigna unguiculata L. Walp.. Planta 139, 183–192 (1978). https://doi.org/10.1007/BF00387146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387146

Key words

Navigation