Skip to main content
Log in

Tridymite: Effect of hydrostatic pressure to 6 kbar on temperatures of two rapidly reversible transitions

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Trajectories of two reversible phase transitions in a low-Na synthetic tridymite have been determined to 6 kbar by differential thermal analysis (DTA) in hydrostatic apparatus using Ar or CO2. The temperature of the lower transition increases from ≈111 ° C at 1 bar linearly with pressure with slope ∼15 deg kbar−1. Pressure raises the temperature of the upper transition from 157 ±2 ° or 159 ° C (independently determined) at 1 bar witħ a slope of ≈53 deg kbar−1, up to ∼0.7 kbar; for the data above that pressure, the initial slope is ≈64 deg kbar−1. Above 2−1/2 kbar, the variation is linear with slope ≈70 deg kbar−1. No evidence for other transitions was found at any of the apparent changes of slope. Hystereses for both transitions decreased at high pressures compared to 1-bar. Preferred values for the transition enthalpies, together with these slopes and the Clausius-Clapeyron equation, yield estimates for the volume changes at the transitions of ≈0.01 (lower) and 0.15 to 0.25 (upper) cm3 gfw−1. These calculated volume changes are not consonant with many of the high temperature volumetric data on tridymites of varying origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, J.B.: The coefficient of linear thermal expansion of tridymite. J. Am. Chem. Soc. 76, 6019–6020 (1954)

    Google Scholar 

  • Cohen, L.H., Klement, W. Jr.: Investigation to 6 kbar the lambda and solid-liquid transitions in sodium nitrate. J. Chem. Eng. Data 19, 210–211 (1974a)

    Google Scholar 

  • Cohen, L.H., Klement, W. Jr.: Determination of the β⇌α′ L transition in Ca2SiO4 to 7 kbar. Cem. Cone. Res. 4, 939–943 (1974b)

    Google Scholar 

  • Cohen, L.H., Klement, W. Jr.: High-low cristobalite transitions in SiO2, AlPO4, and GaPO4: Investigations by differential thermal analysis under hydrostatic pressures ≲ 6 kbar. Philos. Mag. 39A, 399–404 (1979)

    Google Scholar 

  • Cohen, L.H., Klement, W. Jr., Adams, H.G.: Yet more observations on the high-low quartz inversion: Thermal analysis studies to 7 kbar with single crystals. Am. Mineral. 59, 1099–1104 (1974)

    Google Scholar 

  • Dollase, W.A., Baur, W.H.: The superstructure of meteoritic low tridymite solved by computer simulation. Am. Mineral. 61, 971–978 (1976)

    Google Scholar 

  • Flörke, O.W., Langer, K.: Hydrothermal recrystallization and transformation of tridymite. Contrib. Mineral. Petrol. 36, 221–230 (1972)

    Google Scholar 

  • Flörke, O.W., Müller-Vonmoos, M.: Displazive Tief-Hoch-Umwandlung von Tridymit. Z. Kristallogr. Mineral. 133, 193–202 (1971)

    Google Scholar 

  • Frondel, C.: The System of Mineralogy, 7th edn. Vol. 3. New York, London: Wiley 1962

    Google Scholar 

  • Gardner, S.P., Appleman, D.E.: X-ray crystallography and polytypism of naturally-occurring tridymite, SiO2. Am Crystallogr. Assoc. Program Abstr. Ser. 2:2, 271 (1974)

    Google Scholar 

  • Hultgren, R., Desai, P.D., Hawkins, D.P., Gleiser, M., Kelley, K.K., Wagman, D.D.: Selected Values of the Thermodynamic Properties of the Elements. Metals Park, Ohio: American Society for Metals 1973

    Google Scholar 

  • Kato, K., Nukui, A.: Die Kristallstruktur des monoklinen Tief-Tridymits. Acta. Crystallogr. Sect. B 32, 2486–2491 (1976)

    Google Scholar 

  • Kihara, K.: An orthorhomic superstructure of tridymite existing between about 105 ° and 180 ° C. Z. Kristallogr. Mineral. 146, 185–203 (1977)

    Google Scholar 

  • Klement, W. Jr.: Study of the λ transition in liquid sulfur with a differential scanning calorimeter. J. Polym. Sci., Polym. Phys. Ed. 12, 815–818 (1974a)

    Google Scholar 

  • Klement, W. Jr.: Variation of λ transition temperature in NaNO3-base binary alloys with AgNO3, KNO3 and NaNO2. J. Inorg. Nucl. Chem. 36, 1916–1918 (1974b)

    Google Scholar 

  • Konnert, J.H., Appleman, D.E.: The crystal structure of low tridymite. Acta. Crystallogr. B 34, 391–403 (1978)

    Google Scholar 

  • Mosesman, A.M., Pitzer, K.S.: Thermodynamic properties of the crystalline forms of silica. J. Am. Chem. Soc. 63, 2348–2356 (1941)

    Google Scholar 

  • Nukui, A., Nakazawa, H., Akao, M.: Thermal changes in monoclinic tridymite. Am. Mineral. 63, 1252–1259 (1978)

    Google Scholar 

  • Sabatier, G.: Chaleurs de transition des formes de basse température aux formes de haute température du quartz, de la tridymite et de la cristobalite. Bull. Soc. Fr. Mineral. Cristallogr. 80, 444–449 (1957)

    Google Scholar 

  • Sato, M.: X-ray study of tridymite. 3. Mineral. J. 4, 215–225 (1964)

    Google Scholar 

  • Shahid, K.A., Classer, F.P.: Thermal properties of tridymite: 25 ° C–300 ° C. J. Thermal Anal. 2, 181–190 (1970)

    Google Scholar 

  • Sinel'nikov, N.N.: The polymorphic modifications of tridymite. Zh. Neorg. Khim. 1, 2409–2415 [Russ. J. Inorg. Chem. 1 (10), 249–256] (1956)

    Google Scholar 

  • Sosman, R.B.: The Phases of Silica. Brunswick, New Jersey: Rutgers 1965

    Google Scholar 

  • Wunderlich, B., Bopp, R.C.: A study of transition temperature standards by DTA. J. Thermal Anal. 6, 335–343 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, L.H., Klement, W. Tridymite: Effect of hydrostatic pressure to 6 kbar on temperatures of two rapidly reversible transitions. Contr. Mineral. and Petrol. 71, 401–405 (1980). https://doi.org/10.1007/BF00374711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00374711

Keywords

Navigation