Skip to main content
Log in

Observations on the history of central B-splines

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature

  1. Achieser, N. I.: Vorlesungen über Approximationstheorie. Akademie-Verlag, Berlin 1967 (Orig. Russ. ed. Moscow 1947).

    Google Scholar 

  2. Gustav Arendt (ed.): G. Lejeune-Dirichlets Vorlesungen über die Lehre von den einfachen und mehrfachen bestimmten Integralen. Vieweg, Braunschweig 1904.

    Google Scholar 

  3. Ballard, D. H., & Brown, C. M.: Computer Vision. Prentice-Hall, Englewood Cliffs, New Jersey 1982.

    Google Scholar 

  4. Barnhill, R. E., & Riesenfeld, R. F.: Computer Aided Geometric Design. Academic Press, New York 1974.

    Google Scholar 

  5. Barsky, B. A.: Computer Graphics and Computer Aided Geometric Design using Beta-Splines, Springer, New York 1985.

    Google Scholar 

  6. Bartles, R. H., Beatty, J. C., & Barsky, B. A.: An Introduction to the Splines in Computer Graphics. Morgan Kaufmann Publ. 1987.

  7. Bierens de Haan, D.: Nouvelles tables d'integrales définies. P. Engels Ed., Leide 1867.

  8. Bochner, S.: Fourier Analysis, Princeton University Lectures, 1936–1937.

  9. de Boor, C.: A Practical Guide to Splines. Springer, New York 1978.

    Google Scholar 

  10. de Boor, C.: Splines as linear combinations of B-splines. A survey. In: Approximation Theory II (ed. by G. G. Lorentz, C. K. Chui, & L. L. Schumaker), Academic Press, New York 1976, pp. 1–47.

    Google Scholar 

  11. de Boor, C., Höllig, K., & Riemenschneider, S.: Convergence of bivariate cardinal interpolation. Constr. Approx. 1 (1985), 183–193.

    Google Scholar 

  12. Brun, V.: Gauss' fordeingslov. Norsk Matematisk Tidskrift 14 (1932) 81–92.

    Google Scholar 

  13. Butzer, P. L., Engels, W., Ries, S., & Stens, R. L.: The Shannon sampling series and the reconstruction of signals in terms of linear quadratic and cubic splines. SIAM J. Appl. Math. 46 (1986), 299–323.

    Google Scholar 

  14. Butzer, P. L., & Nessel, R. J.: Fourier Analysis and Approximation. Birkhäuser Verlag, Basel, and Academic, Press, New York 1971.

    Google Scholar 

  15. Butzer, P. L., Ries, S., & Stens, R. L.: Approximation of continuous and discontinuous functions by generalized sampling series. J. Approx. Theory 50 (1987), 25–39.

    Google Scholar 

  16. Butzer, P. L., Splettstoesser, W., & Stens, R. L.: The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch. Math.-Verein. 90 (1988), 1–70.

    Google Scholar 

  17. Butzer, P. L., & Stens, R. L.: Prediction of non-bandlimited signals from past samples in terms of splines of low degree. Math. Nachr. 132 (1987), 115–130.

    Google Scholar 

  18. Cramér, H.: Random Variables and Probability Distributions. Cambridge Univ. Press, Cambridge 1937.

    Google Scholar 

  19. Cramér, H.: Mathematical Methods of Statistics. Princeton Univ. Press, Princeton, New Jersey 1946.

    Google Scholar 

  20. G. Lejeune Dirichlet's Werke, Vol. I, ed. by Kronecker, Vol. II continued by L. Fuchs. Georg Reimer, Berlin 1889, 1897 (preprint: Chelsea, New York 1969).

  21. Curry, H. B., & Schoenberg, I. J.: On Pólya distribution functions. IV: The fundamental spline functions and their limits. J. d'Analyse Math. 17 (1966), 71–107.

    Google Scholar 

  22. Czuber, E.: Wahrscheinlichkeitsrechnung, Vol. I. Teubner, Leipzig 1908 (p. 66).

    Google Scholar 

  23. Cupr, K.: Matyás Lerch, Skizze einer Lebensbeschreibung. Casopis pro pestováni matematiky a fysiky 52 (1923), 301–313.

    Google Scholar 

  24. Cupr, K., & Rychlik, K.: Verzeichnis der wissenschaftlichen Arbeiten von Prof. Mathias Lerch. Casopis pro pestováni matematiky a fysiky. 54 (1925), 140–151.

    Google Scholar 

  25. Edwards, J.: A Treatise on the Integral Calculus, with Applications, Examples and Problems. 2 Vols. Macmillan, London 1921–22 (reprinted, Chelsea Publ. Co., New York 1954).

    Google Scholar 

  26. Engels, W., Stark, E. L., & Vogt, L.: Optimal kernels for a general sampling theorem. Journal of Approximation Theory, Vol. 50, No. 1 (1987), 69–83.

    Google Scholar 

  27. Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G.: Tables of Integral Transforms Vol. I, McGraw-Hill, New York, 1954, p. 20.

    Google Scholar 

  28. Favard, J.: Sur l'interpolation. J. Math. Pures Appl. 19 (1940), 281–306.

    Google Scholar 

  29. Feller, W.: An Introduction to Probability Theory and its Applications. John Wiley, New York-London-Sydney, Vol. II. 1968.

    Google Scholar 

  30. Feller, W.: Review of L. S. Goddard (see Ref. 35 below), Math. Reviews 7 (1946), p. 311.

    Google Scholar 

  31. Fettis, H. E.: More on the calculus of the integral 154-1. Math. Comput. 21 (1967), 721–730.

    Google Scholar 

  32. Fjelstaad, J. E.: Bemerking til Viggo Brun: Gauss' fordelingslov, Norsk Matematisk Tidskraft 19 (1937), 69–71.

    Google Scholar 

  33. Fränz, K.: Beiträge zur Berechnung des Verhältnisses von Signalspannung zu Rauschspannung am Ausgang von Empfängern. Elekt. Nachr.-Techn. 17 (1940), 215–230.

    Google Scholar 

  34. Fränz, K.: Die Übertragung von Rauschspannungen über dem linearen Gleichrichter. Hochfrequenztechn. u. Elektroakust. 57 (1941), 146–151.

    Google Scholar 

  35. Goddard, L. S.: The accumulation of chance effects and the Gaussian frequency distribution. Philos. Mag. (7) 36 (1945), 428–433.

    Google Scholar 

  36. Greville, T. N. E.: The general theory of osculatory interpolation. Trans. Actuar. Soc. Amer. 45 (1944), 202–265.

    Google Scholar 

  37. Haldane, J. B. S.: Chance effects and the Gaussian distribution. Phil. Mag. (7) 36 (1945), 184–185.

    Google Scholar 

  38. Hermite, Ch.: Oeuvres, ed. by E. Picard. 4 Vols. Paris 1905–17. Vol. 3, p. 111 ff.

  39. Jenkins, W. A.: Graduation based on a modification of osculatory interpolation. Trans. Actuar. Amer. 28 (1927), 198–215.

    Google Scholar 

  40. Keys, R. G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Processing, ASSP-29 (1981), 1153–1160.

  41. de Laplace, P. S.: Théorie analytique des probabilités, Courcier, Paris 1820 (third edition), pp. 165–69.

  42. Lerch, M.: Stanoveni jistého mnohonásobného integràlu. Casopis pro pestovani matematiky a fysiky (Prague), 37 (1908), 225–230.

    Google Scholar 

  43. Marsden, M. J., & Riemenschneider, S. D.: Cardinal Hermite spline interpolation: convergence as the degree tends to infinity. Trans. Amer. Math. Soc. 235 (1978), 221–244.

    Google Scholar 

  44. Maurer, L.: Über die Mittelwerte der Funktionen einer rellen Variablen, Math. Ann. 47 (1896), 263–280.

    Google Scholar 

  45. Medhurst, R. G., & Roberts, J. H.: Evaluation of the integral 154-2. Math. Comput. 19 (1965), 113–117.

    Google Scholar 

  46. Melzak, Z. A.: Mathematical Ideas, Modeling and Applications. Vol. II of Companion to Concrete Mathematics. John Wiley, New York 1976, xvi + 413 pp.

    Google Scholar 

  47. Natterer, F.: The Mathematics of Computerized Tomography. Teubner and John Wiley, Stuttgart and Chichester, 1986.

    Google Scholar 

  48. Neuman, E.: Moments of B-splines. In: Approximation Theory III. (Ed. by E. W. Cheney), Academic Press, New York 1980, pp. 675–678.

    Google Scholar 

  49. Neuman, E.: Moments and Fourier Transforms of B-splines. J. Comput. Appl. Math. 7 (1981), 51–62.

    Google Scholar 

  50. Park, S. K., & Schowengerdt, R. A.: Image reconstruction by parametric spline convolution. Comput. Vision, Graphics, Image Processing 23 (1983), 258–272.

    Google Scholar 

  51. Pólya, G.: Berechnung eines bestimmten Integrals, Math. Ann. 74 (1913), 204–212.

    Google Scholar 

  52. Quade, W. A., & Collatz, L.: Zur Interpolationstheorie der reellen periodischen Funktionen. S.-B. Preuss. Akad. Wiss. Phys.-Math. KL. 30 (1938), 382–429.

    Google Scholar 

  53. Ries, S.: Approximation stetiger und unstetiger Funktionen durch verallgemeinerte Abtastreihen. Doctoral Dissertation, RWTH Aachen 1984, 96 pp.

  54. Ries, S.: Spline convolution for digital image processing. In: Proc. 2nd International Technical Symposium on Optical and Electrooptical Applied Science and Engineering, Cannes (France), 1985.

  55. Ries, S., & Stens, R. L.: Approximation by generalized sampling series. In: Constructive Theory of Functions (ed. by Bl. Sendov et al.) Publ. House Bulg. Acad. Sci., Sofia 1984, pp. 746–756.

  56. Rietz, H. L.: On a certain law of probability of Laplace. Proceedings Int. Congress Toronto 2 (1928), pp. 795–799.

    Google Scholar 

  57. Rogers, D. F., & Adams, J. A.: Mathematical Elements for Computer Graphics. McGraw Hill, New York 1976.

    Google Scholar 

  58. van Rooij, P. L. J., & Schurer, F.: A bibliography on spline functions. In: Spline-Funktionen; Vorträge und Aufsätze. Ed. by W. Schempp. Bibliographisches Inst., Mannheim 1974, pp. 315–415.

    Google Scholar 

  59. Schmidt, M.: Über die (Vor-)Geschichte der central basic splines und zur Personengeschichte der mathematischen Fakultät der RWTH Aachen. Diplomarbeit, RWTH Aachen 1986, 120 + 103 pp.

    Google Scholar 

  60. Schoenberg, I. J.: Contributions to the problem of approximation of equidistant data by analytic functions. Part A.—On the problem of smoothing or graduation. A first class of analytic approximation formulae. Part B.—On the second problem of osculatory interpolation. A second class of analytic approximation formulae. Quart. Appl. Math. 4 (1946), 45–99 and 112–141.

    Google Scholar 

  61. Schoenberg, I. J.: Cardinal Spline Interpolation, CBMS 12, SIAM, Philadelphia 1973.

    Google Scholar 

  62. Schoenberg, I. J.: Notes on spline functions III. On the convergence of the interpolating cardinal splines as their degree tends to infinity. Israel J. Math. 16 (1973), 87–93.

    Google Scholar 

  63. Schoenberg, I. J.: On the remainders and the convergence of cardinal spline interpolation for almost periodic functions. In: Studies in Spline Functions and Approximation Theory (ed. by S. Karlin, C. A. Micchelli, A. Pinkus, & I. J. Schoenberg), Academic Press, New York 1976.

    Google Scholar 

  64. Schumaker, L. L.: Spline Functions: Basic Theory. John Wiley, New York 1981, xvi + 553 pp.

    Google Scholar 

  65. Schwierz, G., Hörer, W., & Wiesent, K.: Sampling and discretization problems in X-ray-CT. In: Mathematical Aspects of Computerized Tomography. Springer 1981. (ed. by G. T. Herman & F. Natterer).

  66. Scriba, C. J.: Viggo Brun in memoriam. Historia Math. 7 (1980), 1–6.

    Google Scholar 

  67. Scriba, C. J.: Zur Erinnerung an Viggo Brun. Mitt. Math. Ges. Hamburg 11 (1985) 271–290.

    Google Scholar 

  68. Selberg, A.: Minnetale over Professor Viggo Brun. Norske Vid.-Akad. Arbok 1979, pp. 1–15 (pp. 9–15: Bibliography, collected by K. Thalberg).

  69. Silberstein, L.: The accumulation of chance effects and the Gaussian frequency distribution. Phil. Mag. (7) 35 (1944), 395–404.

    Google Scholar 

  70. Sommerfeld, A.: Eine besonders anschauliche Ableitung des Gaussischen Fehlergesetzes. In: Festschrift Ludwig Boltzmann gewidmet zum 60. Geburtstage, 20. Februar 1904. Barth, Leipzig 1904, pp. 848–859.

    Google Scholar 

  71. Sommerfeld, A.: Über die Hauptschnitte eines polydimensionalen Würfels. Bull. Calcutta Math. Soc. 20 (1930), 221–227 (=Sommerfeld: Gesammelte Schriften, Vol. I, pp. 377–83, Vieweg, Braunschweig 1969).

    Google Scholar 

  72. Sun, Jaichang: The Fourier transform of the general B-splines. (Chinese, Engl. Sum.) Acta Math. Appl. Sin. 7 (1984), 147–156.

    Google Scholar 

  73. Sun, Jaichang, & Nasim, C.: The Fourier transform approach to general B-splines. Indian J. Pure Appl. Math. 14 (1983), 811–829.

    Google Scholar 

  74. Thompson, R.: Evaluation of 156-1 and similar integrals. Math. Comput. 20 (1966), 330–332.

    Google Scholar 

  75. Timan, A. F.: The Theory of Approximation of Functions of a Real Variable. Pergamon Press, Oxford 1963, xii + 613 pp.

    Google Scholar 

  76. Tricomi, F.: Über die Summe mehrerer zufälliger Veränderlichen mit konstanten Verteilungsgesetzen. Jahresber. Deutsch. Math.-Verein. 42 (1933), 174–179.

    Google Scholar 

  77. Uspensky, J. V.: Introduction to Mathematical Probability. McGraw Hill, New York, London 1937, pp. 277/78.

    Google Scholar 

  78. Vladimirov, V. S., & Markush, I. I.: Vladimir Andreevich Steklov. Scientist and Administrator (in Russian). “Nauka”, Moscow 1981, 96 pp.

    Google Scholar 

  79. Vogt, L.: Sampling sums with kernels of finite oscillation Numer. Funct. Anal. Optim. 9 (1987/88), 1251–1270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Truesdell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butzer, P.L., Schmidt, M. & Stark, E.L. Observations on the history of central B-splines. Arch. Hist. Exact Sci. 39, 137–156 (1988). https://doi.org/10.1007/BF00348440

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00348440

Navigation