Skip to main content
Log in

Azospirillum — plant root associations: A review

  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Summary

Bacteria of the genus Azospirillum are extensively studied for their plant-growth promoting effect following inoculation. Physiological and biochemical studies of these diazotrophic bacteria are now benefiting from recent breakthroughs in the development of genetic tools for Azospirilum. Moreover, the identification and cloning of Azospirillum genes involved in N2 fixation, plant interaction, and phytohormone production have given new life to many research projects on Azospirillum. The finding that Azospirillum genes can complement specific mutations in other intensively studied rhizosphere bacteria like Rhizobia will certainly trigger the exploration of new areas in rhizosphere biology. Therefore a review of the Azospirillum-plant interactions is particularly timely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Salam MS, Klingmüller W (1987) Transposon Tn5 mutagenesis in Azospirillum lipoferum: Isolation of indole acetic acid mutants. Mol Gen Genet 210:165–170

    Google Scholar 

  • Aman P, McNeil M, Franzen L, Darvill AG, Albersheim P (1981) Structural elucidation, using HPLC-MS and GLC-MS, of the acidic polysaccharide secreted by Rhizobium meliloti strain 1021. Carbohydr Res 95:263–283

    Google Scholar 

  • App AA, Watanabe I, Alexander M, Ventura W, Daez C, Santiago T, De Datta SK (1980) Non-symbiotic nitrogen fixation associated with the rice plant in flooded soils. Soil Sci 130:283–289

    Google Scholar 

  • Balandreau J (1986) Ecological factors and adaptive processes in N2-fixing bacteria populations of the plant environment. Plant and Soil 90:73–92

    Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (1983) Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol 29:924–929

    Google Scholar 

  • Baldani VLD, Alvarez MAB, Baldani JI, Döbereiner J (1986) Establishment of inoculated Azospirillum spp in the rhizosphere and in roots of field-grown wheat and sorghum. Plant and Soil 90:35–46

    Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (1987) Inoculation of fieldgrown wheat with Azospirillum spp in Brazil. Biol Fertil Soils 4:37–40

    Google Scholar 

  • Bani D, Barberio C, Bazzicalupo M, Favilli F, Gallori E, Polsinelli M (1980) Isolation and characterization of glutamate synthase mutants of Azospirillum brasilense. J Gen Microbiol 119:239–244

    Google Scholar 

  • Barak R, Nur I, Okon Y, Henis Y (1982) Aerotactic response of Azospirillum brasilense. J Bacteriol 152:643–649

    Google Scholar 

  • Barak R, Nur I, Okon Y (1983) Detection of chemotaxis in Azospirillum brasilense. J Appl Bacteriol 54:399–403

    Google Scholar 

  • Barbieri P, Zanelli T, Galli E, Zanetti G (1986) Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. ITEMS Microbiol Lett 36:87–90

    Google Scholar 

  • Bashan Y, Levanony H, Klein E (1986) Evidence for weak active external adsorption of Azospirillum brasilense Cd to wheat roots. J Gen Microbiol 132:3069–3073

    Google Scholar 

  • Bastarrachea F, Zamudio M, Rivas R (1987) Non-encapsulated mutants of Azospirillum brasilense and Azospirillum lipoferum. Can J Microbiol 34:24–29

    Google Scholar 

  • Beijerinck MW (1925) Über ein Spirillum, welches freien Stickstoff binden kann? Centralbl Bakt II abt 63:353–357

    Google Scholar 

  • Berlier YM, Lespinat PA (1980) Mass-spectrometric kinetic studies of the nitrogenase and hydrogenase activities in in vivo cultures of Azospirillum brasilense Sp7. Arch Microbiol 125:67–72

    Google Scholar 

  • Boddey RM, Döbereiner J (1988) Nitrogen fixation associated with grasses and cereals: Recent results and perspectives for future research. Plant and Soil 108:53–65

    Google Scholar 

  • Boddey RM, Chalk PM, Victoria RL, Matsui E, Döbereiner J (1983) The use of the 15N isotope dilution technique to estimate the contribution of associated biological nitrogen fixation to the nitrogen nutrition of Paspalum notatum cv batatais. Can J Microbiol 29:1036–1045

    Google Scholar 

  • Boddey RM, Baldani VLD, Baldani JI, Döbereiner J (1986) Effect of inoculation of Azospirillum on the nitrogen assimilation of field-grown wheat. Plant and Soil 95:109–121

    Google Scholar 

  • Borthakur D, Barber CE, Lamb JW Daniels MJ, Downie JA, Johnston AWB (1986) A mutation that blocks exopolysaccharide synthesis prevents nodulation of peas by Rhizobium leguminosarum but not of beans by R. phaseoli and is corrected by cloned DNA from Rhizobium or the phytopathogen Xanthomonas. Mol Gen Genet 203:320–323

    Google Scholar 

  • Bothe H, de Bruijn FJ, Newton WE (1988) Nitrogen fixation: Hundred years after, Proc of the 7th Int Congr on nitrogen fixation. Fischer, Stuttgart New York

    Google Scholar 

  • Bozouklian H, Elmerich C (1986) Nucleotide sequence of the Azospirillum brasilense glutamine synthetase structural gene. Biochimie 68:1181–1187

    Google Scholar 

  • Bozouklian H, Fogher C, Elmerich C (1986) Cloning and characterization of the glnA gene of Azospirillum brasilense Sp7. Ann Inst Pasteur/Microbiol 13713:3–18

    Google Scholar 

  • Brenchley JE, Prival MJ, Magasanik B (1973) Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes J Biol Chem 248:6122–6128

    Google Scholar 

  • Cangelosi GA, Hung L, Puvanesarajah V, Stacey G, Ogza DA, Leigh JA, Nester EW (1987) Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J Bacteriol 169:2086–2091

    Google Scholar 

  • Chan YK, Nelson LM, Knowles R (1980) Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium. Can J Microbiol 26:1126–1131

    Google Scholar 

  • Choma RR, Russa R, Mayer H, Lorkiewicz L (1987) Chemical analysis of Azospirillum lipopolysaccharides. Arch Microbiol 146:341–345

    Google Scholar 

  • Day JM, Döbereiner J (1976) Physiological aspects of N2-fixation by a Spirillum from Digitaria roots. Soil Biol Biochem 8:45–50

    Google Scholar 

  • Dixon Rod (1972) Hydrogenase in legume root nodule bacteroids: Occurrence and properties. Arch Microbiol 85:193–201

    Google Scholar 

  • Djordjevic MA, Gabriel DW, Rolfe BG (1987) Rhizobium: The refined parasite of legumes. Annu Rev Phytopathol 25:145–168

    Google Scholar 

  • Döbereiner J (1989) Isolation and identification of root associated diazotrophs. In: Skinner F, Boddey RM, Fendrik I (eds) Nitrogen fixation with non-legumes. Kluwer, The Netherlands, pp 103–108

    Google Scholar 

  • Döbereiner J, De-Polli H (1980) Diazotrophic rhizocoenoses. In: Stewart WDP (ed) Nitrogen fixation. Academic Press, London, pp 301–333

    Google Scholar 

  • Döbereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in nonleguminous crop plants. Sci Tech Publishers/Springer Verlag, Madison, WI

    Google Scholar 

  • Dommergues Y, Balandreau J, Rinaudo G, Weinhard P (1973) Nonsymbiotic nitrogen fixation in the tropical rhizosphere of rice, maize and different tropical grasses. Soil Biol Biochem 5:83–89

    Google Scholar 

  • Douglas CJ, Halperin W, Nester W (1982) Agrobacterium tumefaciens mutants affected in attachment to plant cells. J Bacteriol 161:850–860

    Google Scholar 

  • Douglas CJ, Staneloni RJ, Rubin RA, Nester EW (1985) Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virculence region. J Bacteriol 161:850–860

    Google Scholar 

  • Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanovski M, Nester E, Helinski DR, Ditta G (1986) Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Aca Sci USA 83:4403–4407

    Google Scholar 

  • El-Khawas H, Klingmüller W (1988) A transformable mutant of Azospirillum brasilense ATCC 29710. In: Klingmüller W (ed) Azospirillum IV: Genetics, physiology, ecology. Springer, Berlin Heidelberg New York, p 64–74

    Google Scholar 

  • Elmerich C (1985) Molecular biology and ecology of diazotrophs associated with non-leguminous plants. Biotechnology 2:967–978

    Google Scholar 

  • Elmerich C, Franche C (1982) Azospirillum genetics: Plasmids, bacteriophages and chromosome mobilization. In: Klingmüller W (ed) Azospirillum I: Genetics, physiology, ecology. Birkhauser, Basel, pp 9–17

    Google Scholar 

  • Elmerich C, Quiviger B, Rosenberg C, Franche C, Laurent P, Döbereiner J (1982) Characterization of a temperate bacteriophage for Azospirillum. Virology 122:29–37

    Google Scholar 

  • Elmerich C, Bouzouklian H, Vieille C, Fogher C, Perroud B, Perrin A, Vanderleyden J (1987) Azospirillum: Genetics of nitrogen fixation and interaction with plants. Phil Trans R Soc Lond B 317:183–192

    Google Scholar 

  • Eskew DL, Focht DD, Ting IP (1977) Nitrogen fixation, denitrification and pleomorphic growth in a highly pigmented Spirillum lipoferum. Appl Environ Microbiol 34:582–585

    Google Scholar 

  • Eskew DL, Eaglesham ARJ, App AA (1981) Heterotrophic 15N2 fixation and distribution of newly fixed nitrogen in a rice-flooded soil system. Plant Physiol 68:48–52

    Google Scholar 

  • Eyers M, Vanderleyden J, Van Gool A (1988) Attachment of Azospirillum to isolated plant cells. FEMS Microbiol Lett 49:435–439

    Google Scholar 

  • Fahsold R, Singh M, Klingmüller W (1985) Cosmid cloning of nitrogenase structural genes of Azospirillum lipoferum. In: Klingmüller W (ed) Azospirillum III: Genetics, physiology, ecology. Springer, Berlin Heidelberg New York, pp 30–40

    Google Scholar 

  • Fani R, Bazzicalupo M, Coianiz P, Polsinelli M (1986) Plasmid transformation of Azospirillum brasilense. FEMS Microbiol Lett 35:23–27

    Google Scholar 

  • Fogher C, Dusha I, Barbot P, Elmerich C (1985) Heterologous hybridization of Azospirillum DNA to Rhizobium nod and fix genes. FEMS Microbiol Lett 30:245–250

    Google Scholar 

  • Franche C, Canelo E, Gauthier D, Elmerich C (1981) Mobilization of the chromosome of Azospirillum brasilense by plasmid R68.45. FEMS Microbiol Lett 10:199–202

    Google Scholar 

  • Gafny R, Okon Y, Kapulnik Y (1986) Adsorption of Azospirillum brasilense to corn roots. Soil Biol Biochem 18:69–75

    Google Scholar 

  • Gauthier D, Elmerich C (1977) Relationship between glutamine synthetase and nitrogenase in Spirillum lipoferum. FEMS Microbiol Lett 2:101–104

    Google Scholar 

  • Germida JJ (1984) Spontaneous induction of bacteriophage during growth of Azospirillum brasilense in complex media. Can J Microbiol 30:805–808

    Google Scholar 

  • Goebel EM, Krieg NR (1984) Fructose catabolism in Azospirillum brasilense and Azospirillum lipoferum. J Bacteriol 159:86–92

    Google Scholar 

  • Goodman RN, Kiraly Z, Wood KR (1986) The biochemistry and physiology of plant disease. University of Missouri Press, Columbia

    Google Scholar 

  • Haahtela K, Wartiovaara T, Sudman V, Skujins J (1981) Root-associated N2 fixation (acetylene reduction) by Enterobácteriaceae and Azospirillum in cold climate spodosols. Appl Environ Microbiol 41:203–206

    Google Scholar 

  • Hadas R, Okon Y (1987) Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlings. Biol Fertil Soils 5:241–247

    Google Scholar 

  • Halsall DM, Gibson AH (1985) Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or Bacillus macerans. Appl Environ Microbiol 50:1021–1026

    Google Scholar 

  • Halsall DM, Turner GL, Gibson AH (1985) Straw and xylem utilization by pure cultures of nitrogen-fixing Azospirillum spp. Appl Environ Microbiol 49:423–428

    Google Scholar 

  • Hartmann A (1988) Iron acquisition properties of Azospirillum spp. In: Bothe H, De Bruijn FJ, Newton WE (eds) Nitrogen fixation: Hundred years after, Proc of the 7th Intcongress on nitrogen fixation. Fischer, Stuttgart New York, p 772

    Google Scholar 

  • Hartmann A, Hurek T (1988) Effect of carotenoid overproduction on oxygen tolerance of nitrogen fixation in Azospirillum brasilense Sp7. J Gen Microbiol 134:2449–2455

    Google Scholar 

  • Hartmann A, Fusseder A, Klingmüller W (1983a) Mutants of Azospirillum affected in nitrogen fixation and auxin production. In: Klingmüller W (ed), Azospirillum: genetics, physiology, ecology. Birkhäuser, Basel, Experientia suppl 48, pp 78–88

    Google Scholar 

  • Hartmann A, Singh M, Klingmüller W (1983b) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can J Microbiol 29:916–923

    Google Scholar 

  • Hartmann A, Fu H, Burris RH (1986) Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp. J Bacteriol 165:864–870

    Google Scholar 

  • Hartmann A, Fu H, Burris RH (1988) Influence of amino acids on nitrogen fixation ability and growth of Azospirillum spp. Appl Environ Microbiol 54:87–93

    Google Scholar 

  • Heinrich D, Hess D (1985) Chemotactic attraction of Azospirillum lipoferum by wheat roots and characterization of some attractants. Can J Microbiol 31:26–31

    Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Beilageheft zu der Zeitschrift des Vereins f.d. Rübenzuckerindustrie des Deutschen Reiches, November 1888

  • Horemans S, De Coninck K, Neuray J, Hermans R, Vlassak K (1986) Production of plant growth substances by Azospirillum sp. and other rhizosphere bacteria. Symbiosis 2:341–346

    Google Scholar 

  • Jain DK, Patriquin DG (1984) Root hair deformation, bacterial attachment, and plant growth in wheat-Azospirillum associations. Appl Environ Microbiol 48:1208–1213

    Google Scholar 

  • John M, Schmidt J, Wieneke U, Krussmann H-D, Schell J (1988) Transmembrane orientation and receptor-like structure of the Rhizobium meliloti common nodulation protein NodC. EMBO J 7:583–588

    Google Scholar 

  • Kapulnik Y, Feldman M, Okon Y, Henis Y (1985a) Contribution of nitrogen fixed by Azospirillum to the N nutrition of spring wheat in Israel. Soil Biol Biochem 17:509–515

    Google Scholar 

  • Kapulnik Y, Okon Y, Henis Y (1985b) Changes in root morphology caused by Azospirillum inoculation. Can J Microbiol 31: 881–887

    Google Scholar 

  • Klossak RM, Bohlool BB (1983) Prevalence of Azospirillum spp. in the rhizosphere of tropical grasses. Can J Microbiol 29:649–652

    Google Scholar 

  • Kondorosi E, Kondorosi A (1986) Nodule induction on plant roots by Rhizobium. Trends Biochem Sci 11:296–299

    Google Scholar 

  • Krieg NR, Döbereiner J (1984) Genus Azospirillum. In Holt JG, Krieg NR (eds) Bergey's manual of systematic bacteriology, 9th edn. Williams & Wilkins, Baltimore, pp 94–104

    Google Scholar 

  • Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51:649–660

    Google Scholar 

  • Lakshmi V, Rao AS, Vijayalakshmi K, Lakshmi-Kumari M, Tilak Kvbr, Subba Rao NS (1977) Establishment and survival of Spirillum lipoferum. Proc Indian Acad Sci, Sect B 86:397–404

    Google Scholar 

  • Lamm RB, Neyra CA (1981) Characterization and cyst production of azospirilla isolated from selected grasses growing in New Jersey and New York. Can J Microbiol 27:1320–1325

    Google Scholar 

  • Leigh JA, Signer ER, Walker GC (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 82:6231–6235

    Google Scholar 

  • Libbert E, Schroder R, Drawert A, Fischer E (1970) Pathways of IAA production from tryptophan by plants and by their epiphytic bacteria: A comparison. Physiol Plant 22:432–439

    Google Scholar 

  • Lin W, Okon Y, Hardy RWF (1983) Enhanced mineral uptake by Zea mais and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl Environ Microbiol 45:1775–1779

    Google Scholar 

  • Loh WHT, Randles CI, Sharp WR, Miller RH (1984) Intermediary carbon metabolism of Azospirillum brasilense. J Bacteriol 158:264–268

    Google Scholar 

  • Long S, Reed JW, Himawan J, Walker GC (1988) Genetic analysis of a cluster of genes required for the synthesis of the Calcofluor-binding exopolysaccharide of Rhizobium meliloti. J Bacteriol 170:4231–4248

    Google Scholar 

  • Ludden PW, Okon Y, Burris RH (1978) The nitrogenase system of Spirillum lipoferum. Biochem J 173:1001–1003

    Google Scholar 

  • Magalhaes FMM, Baldani JI, Souto SM, Kuykendall JR, Döbereiner J (1983) A new acid-tolerant Azospirillum species. Ann Acad Bras Ciên 55:417–430

    Google Scholar 

  • Malik KA, Schlegel HG (1981) Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiol Lett 11:63–67

    Google Scholar 

  • Malik KA, Zafar Y (1985) Quantification of root associated nitrogen fixation in Kallar grass as estimated by 15N isotope dilution. In: Malik KA et al. (eds) Proc Int Symp Nitrogen and the Environment. Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan, pp 161–171

    Google Scholar 

  • Mandimba G, Heulin T, Bally R, Guckert A, Balandreau J (1986) Chemotaxis of free-living nitrogen-fixing bacteria towards maize mucilage. Plant and Soil 90:129–139

    Google Scholar 

  • Marocco A, Bazzicalupo M, Perenzin M (1983) Forage grasses inoculation with gentamycine and sulfaguanidine resistant mutants of Azospirillum brasilense. In: Klingmüller W (ed) Azospirillum II: Genetics, physiology, ecology. Springer, Berlin Heidelberg New York, pp 149–158

    Google Scholar 

  • Martinez-Drets G, Del Gallo M, Burpee C, Burris RH (1984) Catabolism of carbohydrates and organic acids and expression of nitrogenase by azospirilla. J Bacteriol 159:80–85

    Google Scholar 

  • Michiels K, Vanstockem M, Vanderleyden J, Van Gool A (1985a) Stability of broad host range plasmids in Azospirillum: Cloning of a 5.9 kbp plasmid of A. brasilense R07. In: Klingmüller W (ed) Azospirillum III: Genetics, physiology, ecology. Springer, Berlin Heidelberg New York pp 63–73

    Google Scholar 

  • Michiels K, Maris M, Vanstockem M, Vanderleyden J, Van Gool A (1985b) Homology of Azospirillum DNA with the Agrobacterium chromosomal virulence region. Arch Int Physiol Biochim 94:B33

    Google Scholar 

  • Michiels K, Vanderleyden J, Van Gool A, Signer E (1988a) Isolation and properties of Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants. In Skinner F, Boddey RM, Fendrik I (eds) Nitrogen fixation with non-legumes. Kluwer, The Netherlands, pp 189–195

    Google Scholar 

  • Michiels K, Vanderleyden J, Van Gool AP, Signer ER (1988b) Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutants. J Bacteriol 170:5401–5404

    Google Scholar 

  • Michiels K, De Troch P, Onyeocha I, Van Gool A, Elmerich C, Vanderleyden J (1989) Plasmid localization and mapping of two Azospirillum brasilense loci that affect exopolysaccharide synthesis. Plasmid 21:142–146

    Google Scholar 

  • Misra AK, Roy P, Bhattacharya S (1979) Deoxyribonucleic acidmediated transformation of Spirillum lipoferum. J Bacteriol 137:1425–1427

    Google Scholar 

  • Murry MG, Ladha JK (1987) Differential colonization of Azospirillum lipoferum on roots of two varieties of rice (Oryza sativa L). Biol Fertil Soils 4:3–7

    Google Scholar 

  • Myers M, Hubbel DH (1987) Plant cell wall carbohydrates as substrates for Azospirillum brasilense. Appl Environ Microbiol 53:2745–2748

    Google Scholar 

  • Neuer G, Kronenberg A, Bothe H (1985) Denitrification and nitrogen fixation by Azospirillum. Arch Microbiol 141:364–370

    Google Scholar 

  • Neyra CA, Döbereiner J, Lalande R, Knowles R (1977) Denitrification by N2-fixing Spirillum lipoferum. Can J Microbiol 23: 300–305

    Google Scholar 

  • Nur I, Steinitz YL, Okon Y, Henis Y (1981) Carotenoid composition and function in nitrogen-fixing bacteria of the genus Azospirillum J Gen Microbiol 122:27–32

    Google Scholar 

  • Okon Y (1985) Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3:223–228

    Google Scholar 

  • Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant and Soil 90:3–16

    Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1976a) Carbon and ammonia metabolism of Spirillum lipoferum. J Bacteriol 128:592–597

    Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1976b) Factors affecting growth and nitrogen fixation in Spirillum lipoferum. J Bacteriol 127:1248–1254

    Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33:85–88

    Google Scholar 

  • Oliveira RGB, Drozdowicz A (1988) Are Azospirillum bacteriocins produced and active in soil? In: Klingmüller W (ed) Azospirillum IV. Genetics, physiology, ecology Springer, Berlin Heidelberg New York, pp 101–108

    Google Scholar 

  • Patriquin DG, Döbereiner J (1978) Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can J Microbiol 24:734–742

    Google Scholar 

  • Patriquin DG, Döbereiner J, Jain DK (1983) Sites and processes of association between diazotrophs and grasses. Can J Microbiol 29:900–915

    Google Scholar 

  • Pedrosa FO, Döbereiner J, Yates MG (1980) H2-dependent growth and autotrophic CO2 fixation by Derxia. J Gen Microbiol 119:547–551

    Google Scholar 

  • Perroud B, Bandhari SK, Elmerich C (1985) The nifHDK operon of Azospirillum brasilense Sp7. In: Klingmüller W (ed) Azospirillum III: Genetics, physiology, ecology. Springer, Berlin Heidelberg New York, pp 10–19

    Google Scholar 

  • Plazinski J, Rolfe BG (1985) Analysis of the pectolytic activity of Rhizobium and Azospirillum strains isolated from Trifolium repens. J Plant Physiol 120:181–187

    Google Scholar 

  • Polsinelli M, Baldanzi E, Bazzicalupo M, Gallori E (1980) Transfer of plasmid pRD1 from Escherichia coli to Azospirillum brasilense. Mol Gen Genet 178:709–711

    Google Scholar 

  • Quiviger B, Franche C, Lutfalla G, Rice D, Haselkorn R, Elmerich C (1982) Cloning of a nitrogen fixation (nif) gene cluster of Azospirillum brasilense. Biochimie 64:495–502

    Google Scholar 

  • Rao AV, Venkateswarlu B (1982) Associative symbiosis of Azospirillum lipoferum with dicotyledonous succulent plants of the Indian desert. Can J Microbiol 28:778–782

    Google Scholar 

  • Reddy A, Torrey JG, Hirsch AM (1989) Isolation of Frankia strain HFPCcl3 nodulation genes by cross-species complementation of Rhizobium meliloti. In: 4th Int Symp on Molecular Genetics of Plant-Microbe Interactions Acapulco, Mexico, May 15–20, 1988 (in press)

  • Reinhold B, Hurek T, Fendrik I (1985) Strain-specific chemotaxis of Azospirillum spp. J Bacteriol 162:190–195

    Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans D, Deley J (1987) Azospirillum halopraeferans sp. nov, a nitrogen fixing organism associated with roots of Kallar grass (Leptochloa fusca). Int J Syst Bacteriol 37:43–51

    Google Scholar 

  • Reynders L, Vlassak K (1979) Conversion of tryptophan to indoleacetic acid by Azospirillum sp. Soil Biol Biochem 11:547–548

    Google Scholar 

  • Rocha REM, Baldani JI, Döbereiner J (1981) Specificity of infection by Azospirillum spp. in plants with C4 photosynthetic pathway. In: Vose PB, Ruschel AP (eds) Associative N2 fixation, vol II. CRC Press, Boca Raton, pp 67–69

    Google Scholar 

  • Rossen L, Davis EO, Johnston AWB (1987) Plant-induced expression of Rhizobium genes involved in host specificity and early stages of nodulation. Trends Biochem Sci 12:430–433

    Google Scholar 

  • Ruckdäschel E, Kittel BL, Helinski DR, Klingmüller W (1988) Aromatic amino acid aminotransferase of Azospirillum lipoferum and their possible involvement in IAA biosynthesis. In: Klingmüller W (ed) Azospirillum IV. Genetics, physiology, ecology, Springer, Berlin Heidelberg New York, pp 49–53

    Google Scholar 

  • Sadasivan L, Neyra CA (1985) Flocculation in Azospirillum brasilense and Azospirillum lipoferum: Exopolysaccharides and cyst formation. J Bacteriol 163:716–723

    Google Scholar 

  • Sadasivan L, Neyra CA (1987) Cyst production and brown pigment formation in aging cultures of Azospirillum brasilense ATCC 29145. J Bacteriol 169:1670–1677

    Google Scholar 

  • Sampaio MJAM, Silva EMR, Döbereiner J, Yates MG, Pedrosa FO (1981) Autotrophy and methylotrophy in Derxia gummosa, Azospirillum brasilense and Azospirillum lipoferum. In: Gibson AH, Newton WE (eds) Current perspectives in nitrogen fixation. Australian Academy of Science, Canberra, pp 444

    Google Scholar 

  • Sarig S, Blum A, Okon Y (1988) Improvement of the water status and yield of field-grown sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agric Sci Camb 110:271–277

    Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Google Scholar 

  • Schöllhorn R, Burris RH (1966) Study of intermediates in nitrogen fixation. Fed Proc 25:710

    Google Scholar 

  • Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram negative bacteria. Biotechnology 1:784–791

    Google Scholar 

  • Singh M, Klingmüller W (1986) Transposon mutagenesis in Azospirillum brasilense: Isolation of auxotrophic and Nif mutants and molecular cloning of the mutagenized nif DNA. Mol Gen Genet 202:136–142

    Google Scholar 

  • Singh M, Klingmüller W (1988) A Tn5 induced nifA like mutant of Azospirillum brasilense. In: Klingmüller W (ed) Azospirillum IV: Genetics, physiology, ecology. Springer, Berlin Heidelberg New York, pp 26–31

    Google Scholar 

  • Singh M, Wenzel W (1982) Detection and characterization of plasmids in Azospirillum. In: Klingmüller W (ed) Azospirillum I: Genetics, physiology, ecology. Birkhäuser, Basel, pp 44–51

    Google Scholar 

  • Smith RL, Bouton JH, Schank SC, Quesenberry KH, Tyler ME, Milam JR, Gaskins MH, Littell RC (1976) Nitrogen fixation in grasses inoculated with Spirillum lipoferum. Science 193:1003–1005

    Google Scholar 

  • So J-S, Schell M, Stacey G (1989) Phenotypic complementation of nodC mutation in Bradyrhizobium japonicum. In: 4th Int Symp on Molecular Genetics of Plant-Microbe Interactions Acapulco, Mexico, May 15–20, 1988 (in press)

  • Tal S, Okon Y (1985) Production of the reserve material poly-β-hydroxybutyrate and its function in Azospirillum brasilense. Can J Microbiol 31:608–613

    Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group with the description of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Google Scholar 

  • Tien TM, Gaskins MH, Hubbel DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L). Appl Environ Microbiol 37:1016–1024

    Google Scholar 

  • Tien TM, Diem HG, Gaskins MH, Hubbel DH (1981) Polygalacturonic acid transeliminase production by Azospirillum species. Can J Microbiol 27:426–431

    Google Scholar 

  • Umali-Garcia M, Hubbell DH, Gaskins MH (1978) Infection of Panicum maximum by Spirillum lipoferum. In: Granhall U (ed) Environmental role of nitrogen-fixing blue-green algae and asymbiotic bacteria. Ecol Bull (Stockholm) 26:373–379

  • Umali-Garcia M, Hubbell DH, Gaskins MH, Dazzo FB (1980) Association of Azospirillum with grass roots. Appl Environ Microbiol 39:219–226

    Google Scholar 

  • Van Berkum P, Bohlool BB (1980) Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiol Rev 44:491–517

    Google Scholar 

  • Vande Broek A, Van Gool A, Vanderleyden J (1989) Electroporation of Azospirillum brasilense with plasmid DNA. FEMS Microbiol Lett (in press)

  • Vanstockem M, Michiels K, Vanderleyden J, Van Gool A (1987) Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: Physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiol 53:410–415

    Google Scholar 

  • Vieille C, Onyeocha I, Galimand M, Elmerich C (1988) Homology between plasmids of Azospirillum brasilense and Azospirillum lipoferum. In: Skinner F, Boddey RM, Fendrik I (eds) Nitrogen fixation with non-legumes. Kluwer, The Netherlands, pp 165–172

    Google Scholar 

  • Von Bulow JFW, Döbereiner J (1975) Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci USA 72:2389–2393

    Google Scholar 

  • Waelkens F, Maris M, Verreth C, Vanderleyden J, Van Gool A (1987) Azospirillum DNA shows homogy with Agrobacterium chromosomal virulence genes. FEMS Microbiol Lett 43:241–246

    Google Scholar 

  • Westby CA, Enderlin CS, Steinberg NA, Joseph CM, Meeks JC (1987) Assimilation of 13NH4 + by Azospirillum brasilense grown under nitrogen limitation and excess. J Bacteriol 169:4211–4214

    Google Scholar 

  • Wong PP, Stenberg NE, Edgar L (1980) Characterization of a bacterium of the genus Azospirillum from cellulolytic nitrogenfixing mixed cultures. Can J Microbiol 26:291–296

    Google Scholar 

  • Wood AG, Menezes EM, Dykstra C, Duggan DE (1982) Methods to demonstrate the megaplasmids (or minichromosomes) in Azospirillum. In: Klingmüller W (ed) Azospirillum I: Genetics, physiology, ecology. Birkhäuser, Basel, pp 18–34

    Google Scholar 

  • Yagoda-Shagam J, Barton LL, Reed WP, Chiovetti R (1988) Fluorescein isothiocyanate-labeled lectin analysis of the surface of the nitrogen-fixing bacterium Azospirillum brasilense by flow cytometry. Appl Environ Microbiol 54:1831–1837

    Google Scholar 

  • Yoshida T, Ancajas RR (1973) Nitrogen-fixing activity in upland and flooded rice fields. Soil Sci Soc Ann Proc 37:42–46

    Google Scholar 

  • Zimmer W, Stephan MP, Bothe H (1984) Denitrification by Azospirillum brasilense Sp7: I. Growth with nitrate as respiratory electron acceptor. Arch Microbiol 138:206–211

    Google Scholar 

  • Zimmer W, Roeben K, Bothe H (1988) The interactions between the N2-fixing bacterium Azospirillum and wheat. In: Bothe H, De Bruijn FJ, Newton WE (eds) Nitrogen fixation: Hundred years after, Proc of the 7th Int Congr on nitrogen fixation. Fischer, Stuttgart New York, pp 776

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michiels, K., Vanderleyden, J. & Van Gool, A. Azospirillum — plant root associations: A review. Biol Fert Soils 8, 356–368 (1989). https://doi.org/10.1007/BF00263169

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00263169

Key words

Navigation