Skip to main content
Log in

Waves at walls, corners, heights: Looking for simplicity

  • Fundamental Problems
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We discuss the transition probability between energy eigenstates of two displaced “irrigation canal” potentials in its dependence on final state energy and wall steepness. We relate the probability caught underneath the Franck-Condon maximum to the missing probability in the corresponding problem of two displaced infinitely steep and infinitely high potential wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a review of the WKB method see, for example, M. V. Berry, K. E. Mount: Rep. Prog. Phys.35, 315 (1972) J. A. Wheeler:Studies in Mathematical Physics, Essays in Honour of Valentine Bargmann, ed. by E. H. Lieb, A. S. Wightman (Princeton Univ. Press, Princeton 1976)

    Google Scholar 

  2. For the fundamental role of the rectangular potential well in quantum mechanics see, for example, D. Bohm:Quantum Theory (Prentice-Hall, Englewood Cliffs 1951)

    Google Scholar 

  3. For a discussion of the irrigation canal, see M. Casas, H. Krivine, J. Martorell: Am. J. Phys.57, 35 (1989)

    Google Scholar 

  4. Throughout this paper we use dimensionless variablesx=(2μω/ħ)1/2 q andp=(2μħω)−1/2 \(\tilde p\) whereq and\(\tilde p\) denote the dimensional coordinate and momentum of a particle of mass μ and ω is a characteristic frequency. The Schrödinger equation in these coordinates reads\(i\dot \Psi = [p^2 + V(x)]\Psi\)

  5. J. Bestle, W. P. Schleich, J. A. Wheeler: Appl. Phys. B60, 289 (1995)

    Google Scholar 

  6. M. Abramowitz, I. E. Stegun (eds.):Handbook of Mathematical Functions, (National Bureau of Standards, Washington, DC 1964)

    Google Scholar 

  7. For a review of the concept of area-of-overlap and interference in phase space see, for example, J. P. Dowling, W. P. Schleich, J. A. Wheeler: Ann. Phys. (Leipzig)48, 423 (1991) K. Vogel, W. P. Schleich: InFundamental Systems in Quantum Optics, ed. by J. Dalibard, J. M. Raimond, J. Zinn-Justin (Elsevier, Amsterdam 1992)

    Google Scholar 

  8. For a nice discussion of the Bohr correspondence principle and the semi-classical limit we refer to M. Born:Struktur der Materie in Einzeldarstellungen, ed. by M. Born, J. Franck (Springer, Berlin 1925) W. Pauli: InHandbuch der Physik, Vol. 24, ed. by H. Geiger, K. Scheel (Springer, Berlin 1933) P. Debye: Phys. Z.28, 170 (1927)

    Google Scholar 

  9. See, for example, G. Herzberg:Molecular Spectra and Molecular Structure I, Spectra of Diatomic Molecules (von Nostrand, Princeton 1965) p. 169 E.U. Condon: Am. J. Phys.15, 365 (1947)

    Google Scholar 

  10. G. Breit: Phys. Rev.32, 273 (1928) E. U. Condon, P. M. Morse:Quantum Mechanics (McGraw-Hill, New York 1929) p. 44 G. Süßmann:Einführung in die Quantenmechanik (Bibliogr. Institut Mannheim 1963) p.144 A. Das, A. C. Melissinos:Quantum Mechanics, A Modern Introduction (Gordon & Breach, New York 1986) p. 342

    Google Scholar 

  11. I. N. Bronstein, K. A. Semendjajew:Taschenbuch der Mathematik (Harri Deutsch, Zürich 1976)

    Google Scholar 

  12. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev:Integrals and Series (Gordon & Breach, Moscow 1986) p. 33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to H. Walther on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallas, J.A.C., Schleich, W.P. & Wheeler, J.A. Waves at walls, corners, heights: Looking for simplicity. Appl. Phys. B 60, 279–287 (1995). https://doi.org/10.1007/BF01135875

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01135875

PACS

Navigation