Skip to main content
Log in

Surface structure of cubic ionic crystals studied by optical second-harmonic generation

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Polarization and azimuthal dependencies of optical second-harmonic generation at the surface of cubic ionic crystals have been measured on polished surfaces of BaF2 (111) and (100), CaF2 (111) and NaCl (111), using a fundamental wavelength of 532 nm. The results are interpreted in terms of available theory, which shows that for transparent cubic media only the dipolar surface contribution depends on the crystal orientation. For BaF2 (111) and NaCl (111) the crystallineC 3vgeometry could be identified but not for CaF2 (111). Although the nature of the electronic surface structure giving rise to a dipolar polarizability remains undetermined, the experimental result suggests that it may be due to impurity or defect states in the band gap at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Terhune, P.D. Maker, C.M. Savage: Phys. Rev. Lett.8, 404 (1962)

    Google Scholar 

  2. C.C. Wang, A.N. Duminsky: Phys. Rev. Lett.20, 668 (1968)

    Google Scholar 

  3. N. Bloembergen, R.K. Chang, S.S. Jha, C.H. Lee: Phys. Rev.174, 813 (1968)

    Google Scholar 

  4. N. Bloembergen:Nonlinear Optics (Benjamin, New York 1965), Chap. 5

    Google Scholar 

  5. Y.R. Shen:The Principles of Nonlinear Optics (Wiley, New York 1984) Chap. 25

    Google Scholar 

  6. C.K. Chen, T.F. Heimz, D. Ricard, Y.R. Shen: Phys. Rev. Lett.46, 1010 (1981)

    Google Scholar 

  7. Y.R. Shen: J. Vac. Sci. Technol. B3, 1464 (1985) and references therein

    Google Scholar 

  8. Y.R. Shen: Ann. Rev. Mater. Sci.86, 69 (1986) and references therein

    Google Scholar 

  9. P. Guyot-Sionnest, W. Chen, Y.R. Shen: Phys. Rev. B33, 8254 (1986)

    Google Scholar 

  10. J. Reif, H. Fallgren, W.E. Cooke, E. Matthias: Appl. Phys. Lett.49, 770 (1986)

    Google Scholar 

  11. J. Reif, H. Fallgren, H.B. Nielsen, E. Matthias: Appl. Phys. Lett.49, 990 (1986)

    Google Scholar 

  12. J. Reif, H.B. Nielsen, O. Semmler, E. Matthias, E. Westin, A. Rosén: Physica Scripta35, 532 (1987)

    Google Scholar 

  13. E. Matthias, H.B. Nielsen, J. Reif, A. Rosén, E. Westin: J. Vac. Sci. Technol. B5, 1415 (1987)

    Google Scholar 

  14. J. Reif, P. Tepper, E. Matthias, E. Westin, A. Rosén: InLaser spectroscopy VIII ed by W. Persson and S. Svanberg Springer Ser. Opt. Sci.55, (Springer, Berlin, Heidelberg 1987) p. 257

    Google Scholar 

  15. C.V. Shank, R. Yen, C. Hirlimann: Phys. Rev. Lett.51, 900 (1983)

    Google Scholar 

  16. H.W.K. Tom, T.F. Heinz, Y.R. Shen: Phys. Rev. Lett.51, 1983 (1983)

    Google Scholar 

  17. T.F. Heinz, M.M.T. Loy, W.A. Thompson: J. Vac. Sci. Technol. B3, 1467 (1985)

    Google Scholar 

  18. T.A. Driscoll, D. Guidotti: Phys. Rev. B28, 1171 (1983)

    Google Scholar 

  19. H.W.K. Tom, G.D. Aumiller: Phys. Rev. B33, 8818 (1986)

    Google Scholar 

  20. J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan: Phys. Rev.127, 1918 (1962)

    Google Scholar 

  21. P.S. Pershan: Phys. Rev.130, 919 (1963)

    Google Scholar 

  22. C.C. Wang: Phys. Rev.178, 1457 (1969)

    Google Scholar 

  23. J. Ducuing, C. Flytzanis: Second-Order Optical Processes in Solids inOptical Properties of Solids ed. by F. Abelès (North-Holland, Amsterdam 1972) Chap. 11

    Google Scholar 

  24. P. Guyot-Sionnest, Y.R. Shen: Phys. Rev. B35, 4420 (1987) and references therein

    Google Scholar 

  25. P.N. Butcher:Nonlinear Optical Phenomena Bulletin 200, Engineering Experiment Station, Ohio State University, Columbus, Ohio (Ohio State University 1965) pp. 43–50

    Google Scholar 

  26. R.W. Hellwarth: Progr. Quant. Electr.5, 1 (1977)

    Google Scholar 

  27. T.F. Heinz: Private communication

  28. This is strictly valid only for plane waves. The field gradient due to a realistic Gaussian beam profile should be negligibly small compared to\(\partial \tilde E_z /\partial z|_{z = 0} \) and only lead to a negligible, isotropic contribution to the polarization. Also, a transversal field gradient due to absorption by electronic surface states or by defect states in the bulk should be negligible compared to the respective dipole contributions, even though anisotropic

  29. D. Epperlein, B. Dick, G. Marowsky, G.A. Reider: Appl. Phys. B44, 5 (1987)

    Google Scholar 

  30. J.E. Sipe, D.J. Moss, H.M. van Driel: Phy. Rev. B35, 1129 (1987)

    Google Scholar 

  31. A. Rosén, E. Westin, E. Matthias, H.B. Nielsen, J. Reif: Physica Scripta (in press) (1988)

  32. G.W. Rubloff: Phys. Rev. B5, 662 (1972)

    Google Scholar 

  33. It was pointed out in Sect. 2 that the assumption of such a term merely on the basis of symmetry arguments [26] is not justified. This is supported by the experimental observation

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reif, J., Tepper, P., Matthias, E. et al. Surface structure of cubic ionic crystals studied by optical second-harmonic generation. Appl. Phys. B 46, 131–138 (1988). https://doi.org/10.1007/BF00686465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00686465

PACS

Navigation