Skip to main content
Log in

Plasma and surface modeling of the deposition of hydrogenated carbon films from low-pressure methane plasmas

  • Plasma-Enhanced Chemical Vapor Deposition
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The elementary mechanisms are described which determine the plasma and surface processes during the plasma-enhanced chemical vapour deposition of hydrogenated carbon films from methane. Corresponding model calculations are reviewed and critically discussed in comparison to experimental results. A realistic modeling requires the simultaneous and self-consistent treatment of plasma and surface effects. Several experimental data sets on plasma parameters and the growth and the composition of the films have been reproduced successfully. However, a broader experimental data base is needed for more critical tests of the models. The reliability of the modeling, in particular of the surface effects, is still limited due to the poor availability of elementary data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Angus, P. Koidl, S. Domitz: In Plasma Deposited Thin Films, ed. by J. Mort, F. Jansen (CRC Press, Boca Raton 1986) p. 89

    Google Scholar 

  2. P. Koidl, P. Oelhafen (eds.): Amorphous Hydrogenated Carbon Films, E-MRS Symp. Proc., Vol. XVII (Les Editions de Physique, Les Ulis 1987)

    Google Scholar 

  3. J.J. Pouch, S.A. Alterovitz (eds.): Properties and Characterization of Amorphous Carbon Films, Mater. Sci. Forum 52, 53 (1990)

  4. J. Robertson: Surf. Coat. Technol. 50, 185 (1992)

    Google Scholar 

  5. Y. Cathérine: In Diamond and Diamond-Like Films and Coatings, ed. by R.E. Clausing, L.L. Horton, J.C. Angus, P. Koidl, NATO ASI Series B, Vol. 266 (Plenum, New York 1991) p. 661

    Google Scholar 

  6. W. Möller: Appl. Phys. Lett. 59, 2391 (1991)

    Google Scholar 

  7. J. Robertson: Diam. Rel. Mater. (in press)

  8. P. Reinke, W. Möller, W. Jacob: J. Appl. Phys. (in press)

  9. K.C. Bustillo, M.A. Petrich, J.A. Reimer: Chem. Mater. 2, 202 (1990)

    Google Scholar 

  10. S. Kaplan, F. Jansen, M. Machonkin: Appl. Phys. Lett. 47, 750 (1985)

    Google Scholar 

  11. M. Ham, K.A. Lou: J. Vac. Sci. Technol. A 8, 2143 (1990)

    Google Scholar 

  12. R. Kleber, K. Jung, H. Ehrhardt, I. Mühling, K. Breuer, H. Metz, F. Engelke: Thin Solid Films 205, 274 (1991)

    Google Scholar 

  13. M.A. Tamor, W.C. Vassel, K.R. Carduner: Appl. Phys. Lett. 58, 592 (1991)

    Google Scholar 

  14. H.Y. Lu, M.A. Petrich: MRS Symp. Proc. Ser. 223, 327 (1991)

    Google Scholar 

  15. J.M. Tibbitt, M. Shen, A.T. Bell: J. Macromol. Sci.-Chem. A 10, 1623 (1976)

    Google Scholar 

  16. H. Pan, M. Pruski, B.C. Gerstein, F. Li, J.S. Lannin: Phys. Rev. B 44, 6741 (1991)

    Google Scholar 

  17. A. Grill, V. Patel: Appl. Phys. Lett. 60, 2089 (1992)

    Google Scholar 

  18. J.C. Angus, F. Jansen: J. Vac. Sci. Technol. A 6, 1778 (1988)

    Google Scholar 

  19. J. Robertson: Phys. Rev. Lett. 68, 220 (1992)

    Google Scholar 

  20. J.C. Angus: Thin Solid Films 216, 126 (1992)

    Google Scholar 

  21. A.B. Ehrhardt, W.D. Langer: Princeton Plasma Physics Laboratory Report PPPL-2477 (1987)

  22. H. Tawara, Y. Itikawa, H. Nishimura, H. Tanaka, Y. Nakamura: National Institute for Fusion Science Report, NIFS-DATA-6 (1990)

  23. R.K. Janev, W.D. Langer, K. Evans, Jr., D.E. Post, Jr.: Elementary Processes in Hydrogen-Helium Plasmas, (Springer: Berlin, Heidelberg 1987)

    Google Scholar 

  24. M.A. Dillon, R.-G. Wang, D. Spence: J. Chem. Phys. 80, 5581 (1984)

    Google Scholar 

  25. L. Vuškovic, S. Trajmar: J. Chem. Phys. 78, 4947 (1983)

    Google Scholar 

  26. K. Tachibana, M. Nishida, H. Harima, Y. Urano: J. Phys. D 17, 1727 (1984)

    Google Scholar 

  27. W. Tsang, R.F. Hampton: J. Phys. Chem. Ref. Data 15, 1087 (1986)

    Google Scholar 

  28. W.A. Sanders, M.C. Lin: In Chemical Kinetics of Small Organic Radicals, ed. by Z. Alfassi (CRC Press, Boca Raton 1986)

    Google Scholar 

  29. L.E. Kline, M.J. Kushner: Crit. Rev. Solid State Mater. Sci. 16 (1) (1989)

  30. M. Frenklach, H. Wang: Phys. Rev. B 43, 1520 (1991)

    Google Scholar 

  31. I.C. Plumb, K.R. Ryan: Plasma Chem. Plasma Proc. 6, 205 (1986)

    Google Scholar 

  32. Landolt-Börnstein: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik I, ed. by A. Eucken (Springer, Berlin, Heidelberg 1950)

    Google Scholar 

  33. O.J. Hirschfelder, C.F. Curtiss, R.B. Bird: Molecular Theory of Gases and Liquids (Wiley, New York 1964)

    Google Scholar 

  34. P.J. Chantry: J. Appl. Phys. 62, 1141 (1987)

    Google Scholar 

  35. K.M. Case, F. de Hoffmann, G. Placzek: Introduction to the Theory of Neutron Diffusion, (Los Alamos Scientific Laboratory, Los Alamos 1953) Sect. 10.1

    Google Scholar 

  36. L. Tonks, I. Langmuir: Phys. Rev. 34, 876 (1929)

    Google Scholar 

  37. E.A. Mason, E.W. McDaniel: Transport Properties of Ions in Gases (Wiley, New York 1988)

    Google Scholar 

  38. S.C. Brown: Introduction to Electrical Discharges in Gases (Wiley, New York 1966)

    Google Scholar 

  39. H. Toyama, M. Okabayashi, H. Ishizuka: Plasma Phys. 10, 319 (1968)

    Google Scholar 

  40. M.A. Hussein, G.A. Emmert: J. Vac. Sci. Technol. A 8, 2813 (1990)

    Google Scholar 

  41. F.F. Chen: Introduction to Plasma Physics, (Plenum, New York 1974)

    Google Scholar 

  42. K.-U. Riemann: J. Appl. Phys. 65, 999 (1989)

    Google Scholar 

  43. J.W. Coburn, E. Kay: J. Appl. Phys. 43, 4965 (1972)

    Google Scholar 

  44. D. Field, D.F. Klemperer, P.W. May, Y.P. Song: J. Appl. Phys. 70, 82 (1991)

    Google Scholar 

  45. W.D. Davis, T.A. Vanderslice: Phys. Rev. 131, 219 (1963)

    Google Scholar 

  46. J. Rickards: Vacuum 34, 559 (1984)

    Google Scholar 

  47. Ch. Wild, P. Koidl: Appl. Phys. Lett. 54, 505 (1989)

    Google Scholar 

  48. P. Reinke, W. Jacob, W. Möller: In Diamond and Diamond-Like Films and Coatings, ed. by R.E. Clausing, L.L. Horton, J.C. Angus, P. Koidl: NATO ASI Series B, Vol. 266, (Plenum, New York 1991) p. 661

    Google Scholar 

  49. W. Jacob, P. Reinke, W. Möller: Diam. Rel. Mater. (in press)

  50. C.R. Arumainayagam, M.C. McMaster, G.R. Schoofs, R.J. Madix: Surf. Sci. 222, 213 (1989)

    Google Scholar 

  51. E. Vietzke, V. Philipps, K. Flaskamp, P. Koidl, Ch. Wild: Surf. Coat. Technol. 47, 156 (1991)

    Google Scholar 

  52. S. Vepřek, A.P. Webb, H.R. Oswald, H. Stuessi: J. Nucl. Mater. 68, 32 (1977)

    Google Scholar 

  53. W. Möller: In Materials Modification by High-Fluence Ion Beams, ed. by R. Kelly, M.F. da Silva, NATO ASI Series E, Vol. 155 (Kluwer, Dordrecht 1989) p. 151

    Google Scholar 

  54. W. Eckstein: Computer Simulation of Ion-Solid Interactions, Springer Ser. Mater. Sci., Vol. 10 (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  55. J.P. Biersack, J.F. Ziegler: Nucl. Instrum. Methods. 194, 93 (1982)

    Google Scholar 

  56. W.D. Wilson, L.G. Haggmark, J.P. Biersack: Phys. Rev. B 15, 2458 (1977)

    Google Scholar 

  57. J. Lindhard, M. Scharff: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 27, No. 15 (1953)

  58. O.S. Oen, M.T. Robinson: Nucl. Instrum. Methods 132, 647 (1976)

    Google Scholar 

  59. B.T. Kelly: Physics of Graphite (Applied Science Publishers, London 1981)

    Google Scholar 

  60. W. Möller: In Diamond and Diamond-Like Thin Films and Coatings, ed. by R.E. Clausing, L.L. Horton, J.C. Angus, P. Koidl, NATO ASI Series B, Vol. 266 (Plenum, New York 1991) p. 229

    Google Scholar 

  61. W. Möller: Thin Solid Films (in press)

  62. W. Möller, W. Eckstein: Nucl. Instrum. Methods B 2, 814 (1984)

    Google Scholar 

  63. W. Möller, W. Eckstein, J.P. Biersack: Comp. Phys. Commun. 51, 355 (1988)

    Google Scholar 

  64. W. Eckstein, A. Sagara, K. Kamada: J. Nucl. Mater. 150, 266 (1987)

    Google Scholar 

  65. J. Roth: J. Nucl. Mater. 145–147, 87 (1987)

    Google Scholar 

  66. J.W. Zou, K. Reichelt, K. Schmidt, B. Dischler: J. Appl. Phys. 65, 3914 (1989)

    Google Scholar 

  67. M.S. Dresselhaus, R. Kalish: Ion Implantation in Diamond, Graphite and Related Materials, Springer Ser. Mater. Sci., Vol. 22 (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  68. W. Möller, B.M.U. Scherzer: Appl. Phys. Lett. 50, 1870 (1987)

    Google Scholar 

  69. W. Möller, B.M.U. Scherzer: J. Appl. Phys. 64, 4860 (1988)

    Google Scholar 

  70. H. Sugai, H. Kojima, A. Ishida, H. Toyoda: Appl. Phys. Lett. 56, 2616 (1990)

    Google Scholar 

  71. H. Sugai, H. Toyoda: J. Vac. Sci. Technol. A 10, 1193 (1992)

    Google Scholar 

  72. Y. Cathérine, P. Couderc: Thin Solid Films 144, 265 (1986)

    Google Scholar 

  73. P. Reinke: Ionenenergieverteilungen aus einem ECR-Plasma und ihr Einfluß auf das Schichtwachstum von C:H-Schichten, Dissertation (Technical University of Munich 1992)

  74. R.W. Christy: J. Appl. Phys. 31, 1680 (1960)

    Google Scholar 

  75. D. Kunze, O. Peters, G. Sauerbrey: Z. angew. Phys. 22, 69 (1967)

    Google Scholar 

  76. W. Möller, Th. Pfeiffer, M. Schluckebier: Nucl. Instrum. Methods 182/183, 297 (1981)

    Google Scholar 

  77. H. Deutsch, H. Kersten, S. Klagge, A. Rutscher: Contrib. Plasma Phys. 28, 149 (1988)

    Google Scholar 

  78. H. Kersten, G.M.W. Kroesen: J. Vac. Sci. Technol. A 8, 38 (1990)

    Google Scholar 

  79. H. Toyoda, H. Kojima, H. Sugai: Appl. Phys. Lett. 54, 1507 (1989)

    Google Scholar 

  80. H. Kojima, H. Toyoda, H. Sugai: Appl. Phys. Lett. 55, 1292 (1989)

    Google Scholar 

  81. C.E. Melton, P.S. Rudolph: J. Chem. Phys. 47, 1771 (1967)

    Google Scholar 

  82. L.E. Kline, W.D. Partlow, W.E. Bies: J. Appl. Phys. 65, 70 (1989)

    Google Scholar 

  83. K. Behringer: Plasma Phys. Contr. Fus. 33, 997 (1991)

    Google Scholar 

  84. M. Geisler, J. Kieser, E. Räuchle, R. Wilhelm: J. Vac. Sci. Technol. A 8, 908 (1990)

    Google Scholar 

  85. P. Reinke, S. Schelz, W. Jacob, W. Möller: J. Vac. Sci. Technol. A 10, 434 (1992)

    Google Scholar 

  86. R.J. Jensen, A.T. Bell, D.S. Soong: Plasm. Chem. Plasm. Proc. 3, 163 (1983)

    Google Scholar 

  87. A. v. Keudell, W. Möller, R. Hytry: Appl. Phys. Lett. 62, 937 (1993)

    Google Scholar 

  88. A. v. Keudell: Plasmagestützte Deposition von C:H-Schichten: Temperaturabhängigkeit des Schichtwachstums, Diploma Thesis (Technical University of Munich, 1992)

  89. A. v. Keudell, W. Möller: Submitted to J. Appl. Phys.

  90. R. Hytry, W. Möller, R. Wilhelm: In Proc. of the 10 th Int'l Symp. on Plasma Chemistry, ed. by U. Ehlemann, H.G. Lergon, K. Wiesemann (IUPAC 1991)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, W. Plasma and surface modeling of the deposition of hydrogenated carbon films from low-pressure methane plasmas. Appl. Phys. A 56, 527–546 (1993). https://doi.org/10.1007/BF00331402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331402

PACS

Navigation