Skip to main content
Log in

Isolation and primary structure of the ERG9 gene of Saccharomyces cerevisiae encoding squalene synthetase

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The ERG9 gene of Saccharomyces cerevisiae has been cloned by complementation of the erg9-1 mutation which affects squalene synthetase. From the 5kkb insert isolated, the functional gene has been localized on a DNA fragment of 2.5 kb. The presence of squalene synthetase activity in E. coli bearing the yeast DNA fragment isolated, indicates that the structural gene encoding squalene synthetase has been cloned. The sequence of the 2.5 kb fragment contains an open reading frame which could encode a protein of 444 amino acids with a deduced relative molecular mass of 51 600. The amino acid sequence reveals one to four potential transmembrane domains with a hydrophobic segment in the C-terminal region. The N-terminus of the deduced protein strongly resembles the signal sequence of yeast invertase suggesting a specific mechanism of integration into the membranes of the endoplasmic reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnew WS, Popjak G (1978) J Biol Chem 253:4566–4573, 4574–4583

    Google Scholar 

  • Amstrong GA, Alberti M, Leach F, Hearst JE (1989) Mol Gen Genet 216:254–268

    Google Scholar 

  • Anderson S, Yarger JG, Burck CL, Poulter CD (1989) J Biol Chem 264:19176–19184

    Google Scholar 

  • Arnezeder C, Hampel WA (1990) Biotech Lett 12:277–282

    Google Scholar 

  • Bartlett GR (1959) Bioiol Chem 234:466–468

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257:3026–3031

    Google Scholar 

  • Campbell I, Duffus JH (1988) Yeast: a practical approach. IRL Press, Oxford

    Google Scholar 

  • Carlson M, Taussig R, Kustu S, Botstein D (1983) Mol Cell Biol 3:439–447

    Google Scholar 

  • Chambon C, Ladeveze V, Oulmouden A, Servouse M, Karst F (1990) Curr Genet 18:41–46

    Google Scholar 

  • Chevallier MR, Bloch JC, Lacroute F (1980) Gene 11:11–19

    Google Scholar 

  • Church GM, Gilbert W (1984) Proc Natl Acad Sci USA 81:1991–1995

    Google Scholar 

  • Crosby WL, Thomas DY (1983) Nucleic Acid Biochem B503:1–19

    Google Scholar 

  • Faust JR, Goldstein JL, Brown MS (1979) Proc Natl Acad Sci USA 76:5018–5022

    Google Scholar 

  • Henikoff S (1984) Gene 28:351–359

    Google Scholar 

  • Hinnebusch AG (1988) Microbiol Rev 52:248–273

    Google Scholar 

  • Holland JP, Holland MJ (1980) J Biol Chem 255:2596–2605

    Google Scholar 

  • Kammerer B, Guyonvarch A, Hubert JC (1984) J Mol Biol 180:239–250

    Google Scholar 

  • Karst F, Lacroute F (1977) Mol Gen Genet 154:259–277

    Google Scholar 

  • Kuswik-Rabiega G, Rilling HC (1987) J Biol Chem 262:1505–1509

    Google Scholar 

  • Kyte J, Doolittle RF (1982) J Mol Biol 157:105–132

    Google Scholar 

  • M'Baya B, Karst F (1987) Biochem Biophys Res Commun 147:556–564

    Google Scholar 

  • M'Baya B, Fegueur M, Servouse M, Karst F (1989) Lipids 24:1020–1023

    Google Scholar 

  • Merchant S, Bogorad L (1987) J Biol Chem 262:9062–9067

    Google Scholar 

  • Messing J, Gronenborn B, Muller-Hill B, Hofschneider PH (1977) Proc Natl Acad Sci USA 74:3642–3646

    Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Muscio F, Carlson JP, Kuehl L, Rilling HC (1974) J Biol Chem 249:3746–3749

    Google Scholar 

  • Novotny C, Beran K, Behalova B, Dolezalova L, Zajicek J (1987) Folia Microbiol 32:206–210

    Google Scholar 

  • Oulmouden A, Karst F (1990) Gene 88:253–257

    Google Scholar 

  • Pelham HRB, Hardwick KG, Lewis MJ (1988) EMBO J 7:1757–1762

    Google Scholar 

  • Popjak G (1969) Methods Enzymol 15:393–454

    Google Scholar 

  • Popjak G, Edmond J, Clifford K, Williams V (1969) J Biol Chem 244:1897–1918

    Google Scholar 

  • Qureshi AA, Beytia E, Porter JW (1973) J Biol Chem 248:1848–1855

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sasiak K, Rilling HC (1988) Arch Biochem Biophys 260:622–627

    Google Scholar 

  • Servouse M, Karst F (1986) Biochem J 240:541–547

    Google Scholar 

  • Shechter I, Bloch K (1971) J Biol Chem 246:7690–7696

    Google Scholar 

  • Threlfall DR, Whitehead IM (1988) Phytochemistry 27:2567–2580

    Google Scholar 

  • Warburg GF, Wakeel M, Wilton DG (1982) Lipids 17:230–234

    Google Scholar 

  • Wolcott JH, Ross C (1966) Biochim Biophys Acta 122:532–534

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P.P. Slonimski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fegueur, M., Richard, L., Charles, A.D. et al. Isolation and primary structure of the ERG9 gene of Saccharomyces cerevisiae encoding squalene synthetase. Curr Genet 20, 365–372 (1991). https://doi.org/10.1007/BF00317063

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00317063

Key words

Navigation