Skip to main content
Log in

Evolutionary optimization and neural network models of behavior

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

One of the main challenges to the adaptionist program in general and the use of optimization models in behavioral and evolutionary ecology, in particular, is that organisms are so constrained' by ontogeny and phylogeny that they may not be able to attain optimal solutions, however those are defined. This paper responds to the challenge through the comparison of optimality and neural network models for the behavior of an individual polychaete worm. The evolutionary optimization model is used to compute behaviors (movement in and out of a tube) that maximize a measure of Darwinian fitness based on individual survival and reproduction. The neural network involves motor, sensory, energetic reserve and clock neuronal groups. Ontogeny of the neural network is the change of connections of a single individual in response to its experiences in the environment. Evolution of the neural network is the natural selection of initial values of connections between groups and learning rules for changing connections. Taken together, these can be viewed as “design parameters”. The best neural networks have fitnesses between 85% and 99% of the fitness of the evolutionary optimization model. More complicated models for polychaete worms are discussed. Formulation of a neural network model for host acceptance decisions by tephritid fruit flies leads to predictions about the neurobiology of the flies. The general conclusion is that neural networks appear to be sufficiently rich and plastic that even weak evolution of design parameters may be sufficient for organisms to achieve behaviors that give fitnesses close to the evolutionary optimal fitness, particularly if the behaviors are relatively simple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, E., Korst, J.: Simulated annealing and Boltzmann machines. New York: Wiley 1989

    Google Scholar 

  • Aoki, C., Siekevitz, P.: Plasticity in brain development. Sci. Am. 259, 56–67 (1988)

    Google Scholar 

  • Averill, A. L., Prokopy, R. J.: Residual activity of oviposition deterring pheromone in Rhagoletis pomonella (Diptera: Tephritidae) and female response to infested fruit. J. Chem. Ecol. 13, 167–177 (1987)

    Google Scholar 

  • Bounds, D. G.: New optimization methods from physics and biology. Nature 329, 215–219 (1987)

    Google Scholar 

  • Brady, R. M.: Optimization strategies gleaned from biological evolution. Nature 317, 804–806 (1985)

    Google Scholar 

  • Charnov, E. L.: Phenotypic evolution under Fisher's fundamental theorem of natural selection. Heredity, 62, 113–116 (1989)

    Google Scholar 

  • Cowan, J. D., Sharp, D. H.: Neural networks. Quart. Rev. Biophys. 21, 365–427 (1988)

    Google Scholar 

  • Crnjar, R. M., Prokopy, R. J.: Morphological and electrophysiological mapping of tarsal chemoreceptors of oviposition-deterring pheromone in Rhagoletis pomonella flies. J. Insect Physiol. 28, 393–400 (1982)

    Google Scholar 

  • Dehaene, S., Changeux, J.-P., Nadal, J.-P.: Neural networks that learn temporal sequences by selection. Proceedings of the National Academy of Sciences 84, 2727–2731 (1987)

    Google Scholar 

  • Edelman, G.: Neural Darwinism. New York: Basic Books 1987

    Google Scholar 

  • Edwards, D. H., Mulloney, B.: Synaptic integration in excitatory and inhibitory crayfish motoneurons. J. Neurophysiol. 57, 1425–1445 (1987)

    Google Scholar 

  • Evans, S. M.: Non-associative behavioural modifications in nereid polychaetes. Nature 211, 945–948 (1986)

    Google Scholar 

  • Evans, S. M. Behavior in polychaetes. Quart. Rev. Biol. 46, 379–405 (1971)

    Google Scholar 

  • Evans, S. M.: Effects of changes in sensory input on patterns of tubicolous activity in the polychaete Platynereis dumerilii. Marine Behav. Physiol. 7, 307–319 (1981)

    Google Scholar 

  • Evans, S. M., Downie, P. J.: Decision-making processes in the polychaete Platynereis dumerilii. Anim. Behav. 34, 472–479 (1986)

    Google Scholar 

  • Finkel, L. H., Edelman, G. M.: Interactions of synaptic modification rules within populations of neurons. Proc. Nat. Acad. Sci. USA 82, 1291–1295 (1985)

    Google Scholar 

  • Friesen, W. O., Wyman, R. J.: Analysis of Drosophila motor neuron activity patterns with neural analogs. Biol. Cybernetics 38, 41–50 (1980)

    Google Scholar 

  • Getting, P. A.: Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. J. Physiol. 49, 1017–1035 (1983a)

    Google Scholar 

  • Getting, P. A.: Mechanisms of pattern generation underlying swimming in Tritonia. III. Intrinsic and synaptic mechanisms for delayed excitation. J. Physiol. 49, 1036–1050 (1983b)

    Google Scholar 

  • Getting, P. A.: Comparative analysis of invertebrate central pattern generators. In: Cohen, A. (ed.) Neural control of rhythmic movements in vertebrates, chap. 4, pp. 101–127. New York: Wiley 1988

    Google Scholar 

  • Getz, W. M.: A neural network for processing olfactory-like stimuli. Biol. Cybernetworkics, in press

  • Gould, S. J., Lewontin, R. C.: The spandrels of San Marco and the Panglossian paradigm: a critique of the adpationist program. Proc. Rl. Soc Lond. B 205, 581–598 (1979)

    Google Scholar 

  • Grafen, A.: On the uses of data on lifetime reproductive success. In: Clutton-Brock, T. H. (ed.) Reproductive success, pp. 454–471. Chicago: University of Chicago Press 1988

    Google Scholar 

  • Hinton, G. E., Nowlan, S. J.: How learning can guide evolution. Complex Systems 1, 495–502 (1987)

    Google Scholar 

  • Hoffmann, G. W., Benson, M. W., Bree, G. M., Kinahan, P. E.: A teachable neural network based on an unorthodox neuron. Physica 22D, 233–246 (1986)

    Google Scholar 

  • Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987)

    Google Scholar 

  • McClelland, J. L., Rumelhart, D. E., PDP Research Group: Parallel distributed processing. Volume 2: Psychological and biological models. Cambridge, MA: MIT Press 1986

    Google Scholar 

  • Mangel, M.: Oviposition site selection and clutch size in insects. J. Math. Biol. 25, 1–22 (1987)

    Google Scholar 

  • Mangel, M.: The evolution of optimal behavior by natural selection. Preprint, Department of Zoology, University of California, Davis

  • Mangel, M., Clark, C. W.: Dynamic modeling in behavioral ecology. Princeton, NJ: Princeton University Press 1988

    Google Scholar 

  • Maynard Smith, J.: When learning guides evolution. Nature 329, 761–762 (1987)

    Google Scholar 

  • Mulloney, B., Perkel, D. H.: The roles of synthetic models in the study of central pattern generators. In: Cohen, A. (ed.) Neural control of rhythmic movements in vertebrates, Chap. 11, pp. 415–453. New York: Wiley 1988

    Google Scholar 

  • Miller, J. R., Strickler, K. L.: Finding and accepting host plants. In: Bell, W. J., Carde, R. T. (eds.) Chemical ecology of insects. London: Chapman and Hall 1984

    Google Scholar 

  • Papaj, D. R., Prokopy, R. J.: Phytochemical basis of learning in Rhagoletis pomonella and other herbivorous insects. J. Chem. Ecol. 12, 1125–1143 (1986)

    Google Scholar 

  • Prokopy, R. J., Averilli, A. L., Bardinelli, C. M., Bowdan, E. S., Cooley, S. S., Crnjar, R. M., Dundulis, E. A., Roitberg, C. A., Spatcher, P. J., Tumlinson, J. H., Weeks, B. L.: Site of production of an oviposition-deterring pheromone components in Rhagoletis pomonella flies. J. Insect Physiol. 28, 1–10 (1982)

    Google Scholar 

  • Prokopy, R. J., Papaj, D. R., Cooley, S. S., Kallet, C.: On the nature of learning in oviposition site acceptance by apple maggot flies. Anim. Behav. 34, 98–107 (1986)

    Google Scholar 

  • Roitberg, B. D., Mangel, M.: On the evolutionary ecology of marking pheromones. Evol. Ecol. 2, 289–315 (1988)

    Google Scholar 

  • Roitberg, B. D., Prokopy, R. J.: Experience required for pheromone recognition by the apple maggot fly. Nature 292, 540–541 (1981)

    Google Scholar 

  • Roitberg, B. D., Prokopy, R. J.: Host deprivation influence on response of Rhagoletis pomonella to its oviposition deterring pheromone. Physiol. Entomol. 8, 69–72 (1983)

    Google Scholar 

  • Roitberg, B. D., Prokopy, R. J.: Insects that mark host plants. Bioscience 37, 400–406 (1987)

    Google Scholar 

  • Rumelhart, D. E., McClelland, J. L., PDP Research Group: Parallel distributed processing. Volume 1: Foundations. Cambridge, MA: MIT Press 1986

    Google Scholar 

  • Schmidt, J. M., Smith, J. J. B.: Host volume measurement by the parasitoid wasp Trichogramma minutum: The roles of curvature and surface areas. Entomol. Exp. Appl. 39, 213–221 (1985)

    Google Scholar 

  • Schmidt, J. M., Smith, J. J. B.: Correlations between body angles and substrate curvature in the parasitoid wasp Trichogramma minutum: A possible mechanism of host radius measurement. J. Exp. Biol. 125, 271–285 (1986)

    Google Scholar 

  • Schmidt, J. M., Smith, J. J. B.: Measurement of host curvature by the parasitoid wasp Trichogramma minutum, and its effect on host examination and progeny allocation. J. Exp. Biol. 129, 151–164 (1987a)

    Google Scholar 

  • Schmidt, J. M., Smith, J. J. B.: Short interval time measurement by a parasitoid wasp. Science 237, 903–905 (1987b)

    Google Scholar 

  • Williams, G. C.: Adaptation and natural selection. Princeton, NJ: Princeton University Press 1966

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangel, M. Evolutionary optimization and neural network models of behavior. J. Math. Biol. 28, 237–256 (1990). https://doi.org/10.1007/BF00178775

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178775

Key words

Navigation