Skip to main content
Log in

Formation of ferriolivine and magnesioferrite from Mg — Fe-olivine: Reactions and kinetics of oxidation

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Olivine samples (Fa 11) have been oxidized in air (f O2 = 0.2 atm) at temperatures ranging from 350–700 °C and examined by Mössbauer spectroscopy, transmission electron microscopy, X-ray powder diffraction and thermomagnetic analysis. Oxidation of olivine was found to result in ferriolivine, magnesioferrite (major oxide phase) and magnetite (minor oxide phase) formation. Ferriolivine forms planar (001) precipitates, 0.6 nm in thickness, in the olivine host; the composition is likely to be Mg0.5 v 0.5(Fe3+)1.0SiO4. Magnesioferrite MgFe2O4 exsolves as fine-grained precipitates (5–6 nm in size) filling interstices between the ferriolivine planar precipitates. Oxidation kinetic data at 700 °C show two stages of oxidation corresponding to formation of ferriolivine in the first stage and magnesioferrite in the second stage. The linear rate law with a rate constant k Fol = 1.23 · 10-3 s-1 was found for the first stage whereas a parabolic rate-law with a constant of k oxi = 3.28 · 10-3 s-1 was determined for the second stage of oxidation. It was found that ferriolivine is not an intermediate metastable phase in the oxidation process, terminated by magnesioferrite formation. The ferriolivine and magnesioferrite are considered to have formed by independent reactions which do not necessarily proceed simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banfield IF, Veblen DR, Jones BF (1990) Transmission electron microscopy of subsolidus oxidation and weathering of olivine. Contrib Mineral Petrol 106:110–123

    Google Scholar 

  • Banfield IF, Dyar MD, McGuire AV (1992) The defect microstructure of oxidized mantle olivine from Dish Hill, California. Amer Miner 77:977–986

    Google Scholar 

  • Champness PE (1970) Nucleation and growth of iron oxides in olivines, (Mg,Fe)2SiO4 Mineralogical Mag 37:790–800

    Google Scholar 

  • Dieckman R, Schmalzried H, Mason TO (1981) Kinetics of dense magnetite formation during oxidation of wustite and reduction of hematite in CO/CO2 gas mixture. Arch Eisenhüttenwes 52:211–218

    Google Scholar 

  • Haggerty SE, Baker I (1967) The alteration of olivine in basaltic and associated lavas. Part I: High temperature alteration. Contrib Mineral Petrol 16:233–257

    Google Scholar 

  • Hammond PA, Taylor LA (1982) The ilmenite/titano-magnetite assemblage: Kinetics of re-equilibration. Earth and Planetary Sci Letters 61:143–150

    Google Scholar 

  • Iishi K, Kadomi M, Okamoto K (1989) Synthesis of laihunite by heating Fe — Mn olivine in air. Neues Jahrb Mineral Monatsh 6:245–254

    Google Scholar 

  • Iishi K, Okamoto K, Kadomi M (1989) Formation of laihunite from Fe — (Mg,Co,Mn,Ca) olivines. Neues Jahrb Mineral Monatsh 8:345–356

    Google Scholar 

  • Ivanov AP, Safroshkin VY, Trukhin VI, Nekrasov AN (1992) Spectral thermomagnetic analysis of rocks. Izv RAN, Phizika Zemli (in Russian) 3:62–71

    Google Scholar 

  • Kan X, Coey IMD (1985) Mossbauer spectra, magnetic and electrical properties of laihunite, a mixed valence iron olivine mineral. Amer Miner 70:576–580

    Google Scholar 

  • Khisina NR, Khramov DA, Kolosov MV, Meshalkin SS (1992) Products of low-temperature oxidation of olivine Mg1.78Fe0.22SiO4. Doklady RAN (in Russian) 324:866–870

    Google Scholar 

  • Kitamura M, Shen B, Banno S, Morimoto N (1984) Fine textures of laihunite, a nonstoichiometric distorted olivine-type mineral. Amer Miner 69:154–160

    Google Scholar 

  • Kohlstedt DL, Vander Sande IB (1975) An electron microscopy study of naturally occuring oxidation produced precipitates in iron-bearing olivines. Contrib Mineral Petrol 53:13–24

    Google Scholar 

  • Koltermann M (1962) Der thermische Zerfall fayalithaltiger Olivine bei hohen Temperaturen. N Jahrb Mineral Monatsh 181–191

  • Kondoh S, Kitamura M, Morimoto N (1985) Synthetic laihunite (v xFe2 — 3x Fe2x SiO4), an oxidation product of olivine. Amer Miner 70:737–746

    Google Scholar 

  • Laihunite Research Group (1976) Laihunite — a new iron silicate mineral. Geochimica 2:95–103

    Google Scholar 

  • Luecke W, Kohlstedt DL (1988) Kinetics of the internal oxidation of (Mg,Fe)O solid solutions. J Am Ceram Soc 71:189–196

    Google Scholar 

  • Mackwell SI (1992) Oxidation kinetics of fayalite (Fe2SiO4). Phys Chem Miner 19:220–228

    Google Scholar 

  • Nagata T (1961) Rock magnetism. Maruzen Company Ltd., Tokio

    Google Scholar 

  • O'Neil HStC, Annersten H, Virgo D (1992) The temperature dependence of the cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural refinements and Mossbauer spectroscopy. Amer Miner 77:725–740

    Google Scholar 

  • Putnis A (1979) Electron petrografy on high-temperature oxidation of olivine from the Rhum layered intrusion. Mineralogical Mag 43:293–296

    Google Scholar 

  • Schaefer MW (1983) Measurements of iron (III)-rich fayalites. Nature 303:325–327

    Google Scholar 

  • Schmalzried H (1983) Internal and external oxidation of nonmetallic compounds and solid solutions (I). Ber Bunsenges Phys Chem 87:551–558

    Google Scholar 

  • Schwab RB, Kustner D (1977) Präzisionsgitterkonstantenbestimmung zur Festlegung röntgenographischer Bestimmungskurven für synthetische Olivine der Mischkristallreihe Forsterit-Fayalit. N Jahrb Mineral Monatsh 205–215

  • Tamada O, Shen B, Morimoto N (1983) The crystal structure of laihunite (□0.4Fe 2+0.8 Fe 3+0.8 SiO4). Mineralogical Journal 11:382–391

    Google Scholar 

  • Veblen DR (1991) Polysomatism and polysomatic series: a review and applications. Amer Miner 76:801–826

    Google Scholar 

  • Wu T, Kohlstedt DL (1988) Rutherford backscattering spectroscopy study of (Mg, Fe)2SiO4. J Am Ceram Soc 71:540–545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khisina, N.R., Khramov, D.A., Kolosov, M.V. et al. Formation of ferriolivine and magnesioferrite from Mg — Fe-olivine: Reactions and kinetics of oxidation. Phys Chem Minerals 22, 241–250 (1995). https://doi.org/10.1007/BF00202257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202257

Keywords

Navigation