Skip to main content
Log in

Thermally induced phase transitions in tridymite: an infrared spectroscopy study

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The temperature dependence of the infrared active modes of meteoritic and synthetic tridymite have been investigated between 23 K and 1073 K in IR absorption and IR emission experiments. At room temperature both tridymite samples consist of a mixture of low temperature forms, in different proportions, due to the grinding. The sequence of phase transitions in Steinbach tridymite deduced from the IR data agrees well with recent X-ray and calorimetry studies using identical samples (Cellai et al. 1994). The previously suspected structural phase transition P6322⇔P63/mmc is confirmed by the disappearance of the 470 cm-1 mode and a temperature anomaly of the spectral shift of the 790 cm-1 mode. Changes in the infrared spectra of synthetic tridymite give a different sequence of phase transitions from those of the meteoritic sample, consistent with the structural phase transitions observed in a 29Si MAS NMR investigation using the same sample (Xiao et al. 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bismayer U (1988) New developments in Raman spectroscopy on structural phase transitions. In: Salje EKH (ed) Physical properties and thermodynamic behaviour of minerals. NATO ASI C: 225, Reidel, Dordrecht, pp 143–183

    Google Scholar 

  • Carpenter MA, Wennemer M (1985) Characterization of synthetic tridymites by transmission electron microscope. Am Mineral 70:517–528

    Google Scholar 

  • Cellai D, Carpenter MA, Wruck B, Salje EKH (1994) Characterization of high temperature phase transitions in single crystals of Steinbach tridymite. Am Mineral 79:606–614

    Google Scholar 

  • De Dombal RF, Carpenter MA (1993) High-temperature phase transitions in Steinbach tridymite. Eur J Mineral 5:607–622

    Google Scholar 

  • Dollase WA (1967) The crystal structure at 220 °C orthorhombic high tridymite from the Steinbach meteorite. Acta Crystallogr 23:617–623

    Google Scholar 

  • Dollase WA, Baur WH (1976) The superstructure of meteoritic low tridymite solved by computer simulation. Am Mineral 61:971–978

    Google Scholar 

  • Dowty E (1987) Vibrational interactions of tetrahedra in silicate glasses and crystal: II. Calculations on melilites, pyroxenes, silica polymorphs and feldspars. Phys Chem Minerals 14:122–138

    Google Scholar 

  • Etchepare J, Merian M, Kaplan P (1978) Vibrational normal modes of SiO2 II. Cristobalite and tridymite. J Chem Phys 68:1531–1537

    Google Scholar 

  • Gibbs RE (1927) The polymorphism of silicon dioxide and the structure of tridymite. Proc Soc Lond A 13:351–368

    Google Scholar 

  • Görlich E, Blaszczak K, Handke M (1983) Infrared spectra of silica polymorph. Mineral Pol 14:3–18

    Google Scholar 

  • Graetsch H, Flörke OW (1991) X-ray powder diffraction patterns and phase relationship of tridymite modifications. Z Kristallogr 195:31–48

    Google Scholar 

  • Güttler B (1990) Elastic phase transitions in minerals and hard mode infrared spectroscopy — some examples. In: Salje EKH (ed) Phase transitions in ferroelastic and co-elastic crystals. Cambridge University Press, Cambridge, England, pp 230–252

    Google Scholar 

  • Hoffmann W (1967) Gitterkonstanten und Raumgruppe von Tridymite bei 20 °C. Naturwiss. 54:114

    Google Scholar 

  • Hoffmann W, Kockmeyer M, Löns J, Vach Chr (1983) The transformation of monoclinic low-tridymite MC to a phase with an incommensurate superstructure. Fortschr Mineral 61 1:96–98

    Google Scholar 

  • Kato K, Nukui A (1976) Die Kristallstruktur des monoklinen TiefTridymits. Acta Cryst B 32:2486–2491

    Google Scholar 

  • Kihara K (1977) An orthorhombic superstructure of tridymite existing between about 105 and 180 °C. Z Kristallogr 146:185–203

    Google Scholar 

  • Kihara K (1978) Thermal change in unit-cell dimensions and a hexagonal structure of tridymite. Z Kristallogr 148:237–253

    Google Scholar 

  • Kihara K, Matsumuto T, Imamura M (1986) High-order thermal motion tensor analyses of tridymite. Z Kristallogr 177:39–52

    Google Scholar 

  • Konnert J, Appleman D (1978) The crystal structure of low tridymite. Acta Cryst B 84:391–403

    Google Scholar 

  • Löns J, Hoffmann W (1987) Zur Kristallstruktur der inkommensurablen Raumtemperaturphase des Tridymits. Z Kristallogr 178:141–143

    Google Scholar 

  • Nukui A, Nakazawa H (1980) Polymorphism in tridymite. J Mineral Soc Japan, Special Vol 2:364–386

    Google Scholar 

  • Nukui A, Nakazawa H, Akao M (1978) Thermal changes in monoclinic tridymite. Am Mineral 63:1252–1259

    Google Scholar 

  • Salje EKH (1992) Hard Mode Spectroscopy: experimental studies of structural phase transitions. Phase Transitions 37:83–110

    Google Scholar 

  • Salje EKH, Ridgwell A, Güttler, Wruck B, Dove MT, Dolino G (1992) On the displacive character of the phase transition in quartz: a hard-mode spectroscopy study. J Phys Cond Mat 4:571–577

    Google Scholar 

  • Sato M (1964) X-ray study of tridymite. III — Unit cell dimensions and phase transition of tridymite. Mineral J 4:215–225

    Google Scholar 

  • Smelik EA, Reeber RR (1990) A study of thermal behaviour of terrestrial tridymite by continuous X-ray diffraction. Phys Chem Minerals 17:197–206

    Google Scholar 

  • Xiao Y, Kirkpatrick RJ, Kim YJ (1993) Structural phase transitions of tridymite: a 29Si MAS NMR investigation. Am Mineral 78:241–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cellai, D., Carpenter, M.A., Kirkpatrick, R.J. et al. Thermally induced phase transitions in tridymite: an infrared spectroscopy study. Phys Chem Minerals 22, 50–60 (1995). https://doi.org/10.1007/BF00202680

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202680

Keywords

Navigation