Skip to main content
Log in

Mixed photo-cross-linked polyvinyl alcohol and calcium-alginate gels for cell entrapment

  • Biotechnology
  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Living cells may be immobilized by gel entrapment under very mild conditions. The ionotropic gelation of alginate with bivalent cations such as Ca2+, as well as photo-induced gelation of polyvinyl alcohol (PVA) bearing photosensitive stilbazolium (SbQ) groups, are procedures that are compatible with most bioactive materials. In the search for more stable and stronger alginate gel beads, experiments have been carried out to investigate mixed gels from alginate and PVA-SbQ. The swelling capacities, diffusion properties, and potential toxic effect of the binary gel beads have been evaluated. The gel beads of selected PVA-SbQ/alginate mixtures were applied successfully as carriers in a denitrification process with continuous feeding of unsterilized water medium. Under such conditions, the purely synthetic PVA-SbQ network is expected to have a longer lifespan than a natural biopolymer such as alginate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aasen IM, Folkvord K, Levine DW (1992) Development of a process for large scale chromatographic purification of an alginate lyase from Klebsiella pneumoniae. Appl Microbiol Biotechnol 37:55–60

    Google Scholar 

  • Berkaloff C, Jupin H (1974) Modification du spectre d'émmision de fluorescense et de 1'ultrastructure du plaste de 1'algue verte Protosiphon botryoîdes soumise à 1'action de la streptomycine. Protoplasm 80:41–55

    Google Scholar 

  • Boyen C, Kloareg B, Polne-Fuller M, Gibor A (1990) Preparation of alginate lyases from marine molluscs for protoplast isolation in brown algae. Phycologia 29:173–181

    Google Scholar 

  • Casadevall E, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O (1985) Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure and phosphate nutrition. Biotechnol Bioeng 27:286–295

    Google Scholar 

  • Crasswell ET (1978) Some factors influencing denitrification and nitrogen immobilization in a clay soil. Soil Biol Biochem 10:241–245

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Fukushima Y (1988) A new immobilization technique of whole cells and enzymes with colloidal silica and alginate. Biotechnol Bioeng 32:584–594

    Google Scholar 

  • Gacesa P (1992) Enzyme degradation of alginates. Int J Biochem 24:545–552

    Google Scholar 

  • Goosen MFA, O'Shea GM, Gharapetian HM, Chou S, Sun AM (1984) Optimization of microcapsulation parameters as a bioartificial pancreas. Biotechnol Bioeng 27:146–150

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cylotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Can J Microbiol 8:229–239

    Google Scholar 

  • Haugen F, Kortner F, Larsen B (1990) Kinetics and specificity of alginate lyase. Part I. A case study. Carbohydr Res 198:101–109

    Google Scholar 

  • Hertzberg S, Jensen A (1989) Studies of alginate-immobilized marine microalgae. Bot Mar 32:267–273

    Google Scholar 

  • Hertzberg S, Fuskevåg OM, Anthonsen T (1992) Hydrophilic gels as immobilization materials and stabilizers for enzyme-catalyzed esterification in organic media. In: Tramper J, Vermüe MH, Beeftink HH, Stockar U von (eds) Biocatalysis in non-conventional media. Elsevier, Amsterdam, pp 347–354

    Google Scholar 

  • Ichimura K (1982) Preparation of water-soluble photoresist derived from poly(vinyl alcohol). J Polym Sci Polym Chem Ed 20:1411–1417

    Google Scholar 

  • Ichimura K (1984) A convenient photochemical method to immobilize enzymes. J Polym Sci Polym Chem Ed 22:2817–2828

    Google Scholar 

  • Ichimura K, Watanabe S (1980) Immobilization of enzymes with the use of photosensitive polymers having the stilbazolium group. J Polym Sci Polym Chem Ed 18:891–902

    Google Scholar 

  • Ichimura K, Watanabe S (1982) Preparation and characteristics of photocrosslinkable poly(vinyl alcohol). J Polym Sci Polym Chem Ed 20:1419–1432

    Google Scholar 

  • Kakiichi N, Shibuya S, Akita K, Sugimoto Y, Oshida T, Hayashi M, Kamata S, Komine K, Otsuka H, Ushida K (1992) Immobilization of denitrifying bacteria using poly(vinyl alcohol) and denitrification by immobilized cells. Anim Sci Technol 63:47–53

    Google Scholar 

  • Kawakami K, Tsuruda S, Miyagi K (1990) Immobilization of microbial cells in a mixed matrix of silicone polymer and calcium alginate gel: epoxiation of 1-octene by Nocardia corallina B-276 in organic media. Biotechnol Prog 6:357–361

    Google Scholar 

  • Klein J, Wagner F (1978) Immobilized whole cells. In: Behrens D, Fischbeck K (eds) Biotechnology, Proceedings of the First European Congress on Biotechnology, 25–29 September 1978, (Dechema Monographien no. 82) Verlag Chemie, Weinheim, pp 142–164

    Google Scholar 

  • Kokofuta E, Yukishige M, Nakamura I (1987) Coimmobilization of Nitrosomonas europaea and Paracoccus denitrificans cells using polyelectrolyte complex stabilized calcium alginate gel. J Ferment Technol 65:659–664

    Google Scholar 

  • Kokufuta E, Shimohashi M, Nakamura I (1988) Simultaneously occurring nitrification and denitrification under oxygen gradient by polyelectrolyte complex-coimmobilized Nitrosomonas europaea and Paracoccus denitrificans cells. Biotechnol Bioeng 31:382–384

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mano T, Mitsuda S, Kumazawa E, Takeshita Y (1992) New immobilization method of mammalian cells using alginate and polyacrylate. J Ferment Bioeng 73:486–489

    Google Scholar 

  • Martinsen A, Skjåk-Bræk G, Smidsrød O (1989) Alginate as immobilization material I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 33:79–89

    Google Scholar 

  • Martinsen A, Storrø I, Skjåk-Bræk G (1992) Alginate as immobilization material: III. Diffusional properties. Biotechnol Bioeng 39:186–194

    Google Scholar 

  • Mattiasson B (1983) Immobilization methods. In: Mattiasson B (ed) Immobilized cells and organelles, vol 1 CRC Press, Boca Raton Fl., pp 3–26

    Google Scholar 

  • Morris ER (1990) Mixed polymer gels. In: Harris P (ed) Food gels Elsevier, London, pp 291–359

    Google Scholar 

  • Nakajima H, Sonomoto K, Morikawa H, Sato F, Ichimura K, Yamada Y, Tanaka A (1986) Entrapment of Lavandula vera cells with synthetic resin prepolymers and its application to pigment production. Appl Microbiol Biotechnol 24:266–270

    Google Scholar 

  • Nilsson I, Ohlson S (1982) Columnar denitrification of water by immobilized Pseudomonas denitrificans cells. Eur J Appl Microbiol Biotechnol 14:86–90

    Google Scholar 

  • Nilsson I, Ohlson S, Häggström L, Mohlin N, Mosbach K (1980) Denitrification of water using immobilized Pseudomonas denitrificans cells. Eur J Appl Microbiol Biotechnol 14:86–90

    Google Scholar 

  • Østgaard K (1992) Enzymatic microassay for the determination and the characterization of alginates. Carbohydr Polym 19:51–59

    Google Scholar 

  • Østgaard K, Hertzberg S, Indergaard M (1987) Alginate based media for marine algae. In: Stadler T, Karamanos Y, Morvan H, Verdus MC, Mollion J, Christaen D (eds) Abstracts of the 4th meeting of the SAA (Société pour l'Algologie Appliquée), 14–17 September 1987, Villeneuve d'Ascq, France: Recent Progress in Algal Biotechnology, SAA, Lille, pp P37-P37.

    Google Scholar 

  • Østgaard K, Knutsen SH, Dyrset N, Aasen IM (1993) Production and characterization of guluronate lyase from Klebsiella pneumoniae for applications in seaweed biotechnology. Enzyme Microb Technol 15:756–763

    Google Scholar 

  • Scott CD (1987) Immobilized cells: a review of recent literature. Enzyme Microb Technol 9:66–73

    Google Scholar 

  • Shihira I, Krauss RW (1965) Chlorella: physiology and taxonomy of 41 isolates. University of Maryland Press, Baltimore, MD, USA

    Google Scholar 

  • Skjåk-Bræk G, Grasdalen H, Draget KI, Smidsrød O (1989) Inhomogeneous calcium alginate beads. In: Crescenzi V, Dea ICM, Paoletti S, Stivala SS, Sutherland IW (eds) Biomedical and biotechnological advances in industrial polysaccharides. Gordon and Breach, New York, pp 345–363

    Google Scholar 

  • Smidsrød O, Skjåk-Bræk G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 3:71–78

    Google Scholar 

  • Strickland JDH, Parson TR (1977). A practical handbook of seawater analysis, 2nd edn. Fisheries Research Board of Canada, Alger Press, Ottawa, pp 71–76

    Google Scholar 

  • Wijffels RH, Schukking GC, Tramper J (1990) Characterization of a denitrifying bacterium immobilized in χ-carageenan. Appl Microbiol Biotechnol 34:399–403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertzberg, S., Moen, E., Vogelsang, C. et al. Mixed photo-cross-linked polyvinyl alcohol and calcium-alginate gels for cell entrapment. Appl Microbiol Biotechnol 43, 10–17 (1995). https://doi.org/10.1007/BF00170615

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170615

Keywords

Navigation