Skip to main content
Log in

On the fracture morphology in wood

part 1: A SEM-study of deformations in wood of spruce and aspen upon ultimate axial compression load

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

Structural changes in spruce and aspen wood samples subjected to axial compression were examined by means of the scanning electron microscope. For comparison, macroscopic model experiments were carried out on tube-shaped samples made of paper so as to represent segments of fibriform xylem cells. The results show that there are fracture patterns characteristic of wood in general and others characteristic of the species of wood. The phenomena characteristic of wood in general are prevalent at the cellular level and in the fracture behaviour of the cell wall layers and perforations. The characteristics of the various species of wood dominate at the level of the growth rings and are decisively influenced by the composition and arrangement of the tissues. The model experiments show that the failure morphology of the individual cells of the xylem may be explained to some extent by their geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borgin, K.; Parameswaran, N.; Liese, W. 1975: The effect of aging on the ultrastructure of wood. Wood Sci. Technol. 9: 87–98

    Google Scholar 

  • Debaise, G. R.; Porter, A. W.; Pentoney, R. E. 1966: Morphology and mechanics of wood fracture Mater. Res. Stand. 6: 493–499

    Google Scholar 

  • Delorme, A.; Verhoff, S. 1975: Zellwanddeformationen in sturmgeschädigtem Fichtenholz unter dem Rasterelektronenmikroskop. Holz Roh-Werkst. 33: 456–460

    Google Scholar 

  • Dinwoodie, J. M. 1968: Failure in timber. Part 1: Microscopic changes in cell wall structure associated with compression failure. J. Inst. Wood Sci. 4: 37–53

    Google Scholar 

  • Dinwoodie, J. M. 1975: Timber — a review of the structure — mechanical property relationship. J. Microsc. 104: 3–32

    Google Scholar 

  • Ellenberg, H.; Klötzli, F. 1972: Waldgesellschaften und Waldstandorte der Schweiz. Mitteilung. Eidg. Anstalt f. d. forstl. Versuchswesen. 48: 591–868

    Google Scholar 

  • Exley, R. R.; Butterfield, B. G.; Meylan, B. A. 1974: Preparation of wood specimens for the scaning electron microscope. J. Microsc. 101: 21–30

    Google Scholar 

  • Frey-Wyssling, A. 1953: Über den Feinbau der Stauchlinien in überbeanspruchtem Holz. Holz Roh-Werkstoff 11: 283–288

    Google Scholar 

  • Grossmann, P. U. A. 1974: The role of the botanical structure of wood in the fracture process. In: Proceedings of the Australian Fracture Group Conference, Melbourne: 51–57

  • Grossmann, P. U. A.; Wold, M. B. 1971: Compression fracture of wood parallel to the grain. Wood Sci. Technol. 5: 147–156

    Google Scholar 

  • Jeronimidis, G. 1976: The fracture of wood in relation to its structure. Leiden Bot. Ser. 3: 253–265

    Google Scholar 

  • Keith, C. T. 1971: The anatomy of compression failure in relation to creep-inducing stresses. Wood Sci. 4: 71–82

    Google Scholar 

  • Keith, C. T. 1974: Longitudinal compressive creep and failure development in white spruce compression wood. Wood Sci. 7: 1–12

    Google Scholar 

  • Keith, C. T.; Côté W. A. Jr. 1968: Microscopic characterization of slip lines and compression failures in wood cell walls. For. Prod. J. 18: 67–74

    Google Scholar 

  • Kisser, J.; Steininger, A. 1952: Makroskopische und mikroskopische Strukturänderungen bei der Biegebeanspruchung von Holz. Holz Roh-Werkstoff 10: 415–421

    Google Scholar 

  • Kitahara, R.; Tsutsumi, J.; Matsumoto, T. 1981: Observations on cell wall response and mechanical behaviour in wood subjected to repeated static bending load. Mokuzai Gakkaishi 27: 1–7

    Google Scholar 

  • Kučera, L. J. 1981: Cutting wood specimens for observations in the scanning electron microscope. J. Microsc. 124: 319–325

    Google Scholar 

  • Ohsawa, J.; Yoneda, Y. 1978: Shearing test of woods as a model of defibration. Part 2: Exposed surface by shearing fracture. Mokuzai Gakkaishi 24: 790–796

    Google Scholar 

  • Robinson, W. 1920: The microscopical features of mechanical strains in timber and the bearing of these on the structure of the cell wall in plants. Philos. Trans. Soc. London. Ser. B 210: 49–82

    Google Scholar 

  • Scurfield, G.; Silva, S. R.; Wold, M. B. 1972: Failure of wood under load applied parallel to grain: A study using scanning electron microscopy. Micron 3: 160–184

    Google Scholar 

  • Stupnicki, J. 1970: Strukturmodell der Holzzelle zur Untersuchung von Bruchvorgängen. Holztechnologie 11: 168–176

    Google Scholar 

  • Wardrop, A. B.; Addo-Ashong, F. W. 1963: The anatomy and fine structure of wood in relation to its mechanical failure. In: C. J. Osborn (ed.) Fracture. Proceedings of the First Tewksbury Symposium. Melbourne: 169–200

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kučera, L.J., Bariska, M. On the fracture morphology in wood. Wood Sci. Technol. 16, 241–259 (1982). https://doi.org/10.1007/BF00353147

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353147

Keywords

Navigation