Skip to main content
Log in

On analysis and optimization in structural acoustics — Part I: Problem formulation and solution techniques

  • Review Articles
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

This paper is devoted to problems of structuralacoustic coupling with emphasis on analysis, design sensitivity analysis and optimization. The paper is divided into two parts, and it is the aim of Part I to (i) give a brief survey of recent developments in sensitivity analysis and sound emission and NVH (Noise, Vibration and Harshness) design of acoustically loaded structures, and (ii) discuss alternative objective functions and optimization formulations for structural acoustics. The aims of Part II are to (i) present consistent numerical techniques commonly used for treatment of coupled structural and acoustic dynamics, (ii) use the structural optimization tool ODESSY for solution of several coupled problems, and (iii) compare the numerical efficiency of alternative techniques and the relevance of selected objective functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Constans, E.W.; Belegundu, A.D. 1996: Minimizing radiated sound from vibrating shells.Proc. 6-th AIAA/NASA/USAF Multidisciplinary Analysis and Optimization Symp. (held in Bellevue, WA), pp. 1106–1115. (To appear inAIAA J.)

  • Coyette, J.P. 1992: Application of a new wave envelope formulation to exterior acoustic and elastoacoustic problems.J. de Physique IV 2, 1069–1072

    Google Scholar 

  • Cunefare, K.A.; Koopman, G.H. 1991: A boundary element approach to optimization of active noise control sources on three-dimensional structures.ASME J. Vibr. & Acoustics 113, 387–394

    Google Scholar 

  • Cunefare, K.A.; Koopmann, G.H. 1992: Acoustical design sensitivity for structural radiators,Trans. ASME, J. Vibr. & Acoustics 114, 179–186

    Google Scholar 

  • Everstine, G.G.; Henderson, F.M. 1990: Coupled finite element/boundary element approach for fluid-structure interaction.J. Acoust. Soc. Amer. 87, 1938–1948

    Google Scholar 

  • Fahnline, J.B.; Koopmann, G.H. 1997:Designing quiet structures: A sound power minimization approach. London: Academic Press

    Google Scholar 

  • Filippi, P.J.T.; Habault, D. 1989: Sound radiation by a baffled cylindrical shell: a numerical technique based on boundary integral equations. Parts I and II.J. Sound & Vibr. 131, 13–24; 25–36

    Google Scholar 

  • Hahn, S.H.; Ferry A.A. 1994: Sensitivity analysis of coupled structural-acoustic problems using pertubations techniques.Proc. 3-rd Cong. on Air- and Structure-Borne Sound and Vibration, pp. 1799–1805

  • Jeans, R.; Mathews, I.C. 1991: Use of Lanczoz vectors in structural acoustic problems.NCA-12/AMD 128 Structural Acoustics ASME, 101–112

  • Jo, C.H.; Elliot, S.J. 1992: Active noise control of low frequency sound transmission between rooms.JASA 92, 1461–1472

    Google Scholar 

  • Kliaus, K.M. 1996: Acoustic radiation by low-frequency vibration of slender source in fluid medium.Proc. 4-th Int. Cong. on Structure-Borne Sound and Vibration, pp. 931–936

  • Lamancusa, J.S. 1993: Numerical optimization techniques for structural-acoustic design of rectangular plates.Comp. & Struct. 48, 661–675

    Google Scholar 

  • Ma, Z.D.; Hagiwara, I. 1991: Sensitivity analysis methods for coupled acoustic-structural systems,AIAA J. 29, 1787–1801

    Google Scholar 

  • Matsumoto, T.; Tanaka, M.; Yamada, Y. 1995: Design sensitivity analysis of steady-state acoustic problems using boundary integral equation formulation.JSME Int. J., Series C 38, 9–16

    Google Scholar 

  • Mollo, C.G.; Bernard, R.J. 1989: Generalized methods of predicting optimal performance of active noise controlers.AIAA J. 27, 1473–1478

    Google Scholar 

  • Nefske, D.J.; Sung, S.H. 1984: A coupled structural-acoustic finite element model for vehicle noise interior analysis.Trans. ASME 106, 314–31

    Google Scholar 

  • Nefske, D.J.; Sung, S.H. 1986: Component mode synthesis of a vehicle structural-acoustic system model.AIAA J. 24, 1021–1026

    Google Scholar 

  • Olson, L.G.: Bathe, K.-I. 1985: Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential.Comp. & Struct. 21, 21–32

    Google Scholar 

  • Pal, C.; Hagiwara, I. 1994: Optimization of noise level reduction by truncated modal coupled structural-acoustic sensitivity analysis.JSME Int. J., Series C 37, 246–251

    Google Scholar 

  • Salagame, R.R.; Belegundu, A.D.; Koopman, G.H. 1995: Analytical sensitivity of acoustic power radiated from plates.Trans. ASME, J. Vibr. & Acoustics 117, 43–48

    Google Scholar 

  • Sandberg, G. 1995: A new strategy for solving fluid-structure problems.Int. J. Numer. Meth. Engrg. 38, 357–370

    Google Scholar 

  • Sandberg, J.; Goransson, P. 1988: A symmetric finite element formulation for acoustic fluid-structure interaction analysis.J. Sound & Vibr. 123, 507–515

    Google Scholar 

  • Schenck, H.A. 1968: Improved integral formulation for acoustic radiation problems.J. Acoust. Soc. Amer. 44, 41–58

    Google Scholar 

  • Seybert, A.F. 1987: A note on methods for circumventing nonuniqueness when using integral equations.J. Sound & Vibr. 115, 171–172

    Google Scholar 

  • Seybert, A.F.; Wu, T.W. 1985: An advanced computational method for radiation and scattering of acoustic waves in three dimensions.J. Acous. Soc. America 79, 362–368

    Google Scholar 

  • Seybert, A.F.; Wu, T.W.; Li, W.L. 1991: A coupled FEM/BEM for fluid-structure interaction using Ritz vectors and eigenvectors.NCA 12/AMD 128.Structural Acoustics ASME, 171–178

  • Shaw, R.P.; Falby, W. 1978: F.E.-B.I.E.: combination of the finite element and boundary integral methods.J. Comp. & Fluids 6, 153–160

    Google Scholar 

  • Slepyan, L.I.; Sorokin, S.V. 1995: Analysis of structural-acoustic coupling problems by a two-level boundary integral equations method. Parts 1 and 2.J. Sound & Vibr. 184, 195–211, 213–228

    Google Scholar 

  • Smidt, D.C.; Bernard, R.J. 1992: Computation of acoustic shape design using a boundary element method.Trans. AMSE, J. Vibr. & Acous. 114, 127–132

    Google Scholar 

  • Sorokin, S.V. 1993: A sensitivity analysis of thin-walled vibrating structures in the structural-acoustic coupling formulation.Proc. 1-st Cong. “Structural Optimization”, pp. 213–220

  • Sorokin, S.V. 1995: Analysis of vibrations of a spatial acoustic system by the boundary integral equations method.J. Sound & Vibr. 180, 657–667

    Google Scholar 

  • St. Pierre, R.L.; Koopman, G.H. 1995: A design method for minimizing the sound power radiated from plates by adding optimally sized, discrete masses.Trans. ASME, J. Vibr. & Acous. 117, 243–251

    Google Scholar 

  • Tanaka, M.; Masuda, Y. 1987: Boundary element analysis of some structural-acoustic coupling problems-theory and application of BEM.Proc. 1-st Japan-China Symp., pp. 407–419

  • Volkov, E.A.; Postnov, V.A. 1984: Numerical methods in analyses of marine structures.Trans. Leningrad Shipbuilding Inst., pp. 7–21 (in Russian)

  • Vorovich, I.I.; Tsionskij, A.Y.; Yudin, A.S. 1983: Method of natural modes for forced vibrations of stiffened shells of revolution in a liquid.Akusticheskij Zhurnal 29, 744–748 (in Russian)

    Google Scholar 

  • Wang, S.; Hung, H.H.; Hwang, H.Y.; Park, Y.; Choi, K. 1994: Design sensitivity analysis of NVH of vehicle body structure.AIAA Paper 94-4385 CP, 1192–1202

  • Wilson, E.L.; Yuan, M.W.; Dickens, J.M. 1982: Dynamic analysis by direct superposi-tion of Ritz vectors.Earthquake Engrg. & Struct. Dynamics 10, 813–821

    Google Scholar 

  • Yang, T.C.; Tseng, C.H.; Ling, S.F. 1995: A boundary-element-based optimization technique for design of enclosure acoustical treatments.J. ASA 98, 302–312

    Google Scholar 

  • Xia, H.; Humar, J.L. 1992: Frequency dependent Ritz vectors.Earthquake Engrg. & Struct. Dynamics 21, 215–231

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, S.T., Sorokin, S.V. & Olhoff, N. On analysis and optimization in structural acoustics — Part I: Problem formulation and solution techniques. Structural Optimization 16, 83–95 (1998). https://doi.org/10.1007/BF01202818

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01202818

Keywords

Navigation