Skip to main content

Advertisement

Log in

Nasal Epithelial Permeation of Thymotrinan (TP3) Versus Thymocartin (TP4): Competitive Metabolism and Self-Enhancement

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate concentration dependent permeabilities andmetabolism kinetics of thymotrinan (TP3) versus thymocartin (TP4)in nasal epithelium in vitro.

Methods. Excised bovine nasal mucosa was used as an in vitro model.Permeabilities were studied in a diffusion chamber, metabolism kineticsin a reflection kinetics set-up. Studies were performed at various TP3and TP4 concentrations. The 3H-mannitol flux was measured to monitorjunctional permeability. Potential Ca2+-complexation was investigatedusing a Ca2+-selective electrode.

Results. Permeability of TP3 was negligible at 0.1 and 0.2 mM andincreased drastically above 0.4 mM up to ∼2 × 10−5 cm s−1. In thepresence of 2 mM TP4 the TP3 permeabilites were significantly above(∼4 × 10−5 cm s−1) the level of TP3 without TP4, and TP3 metabolismwas totally inhibited. TP3 and TP4 showed a significant concentrationdependent effect on the permeability of 3H-mannitol. Ahyperosmolarity effect of the peptide solutions was excluded. Transepithelialelectrical resistance (TEER; ∼30 Ω cm2) was unchanged by either TP3 orTP4. At 1 mM TP3 the mucosal-to-serosal permeability was four timeshigher than serosal-to-mucosal, indicating enzyme polarization. Inreflection kinetics studies, TP3 degradation was slightly higher on themucosal than on the serosal side. TP3 and TP4 followed the samenon-linear metabolism kinetics.

Conclusions. Increase in permeability at high TP concentrationsinvolves competitive enzyme saturation combined with self-enhancedparacellular permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Rajnavolgyi, J. Kulics, M. Szilagyvari, L. Kisfaludy, O. Nyeki, I. Schon, and J. Gergely. The influence of new thymopoietin derivatives on the immune response of inbred mice. Int. J. Immunopharmacol. 8:167-177 (1986).

    Google Scholar 

  2. L. Denes, B. Szende, G. Y. Hajos, L. Szporny, and K. Lapis. Therapeutic possibilities of thymopoietin fragments (TP3 and TP4) based on experimental animal models. DECRDP 13:279-287 (1987).

    Google Scholar 

  3. A. Bernkop-Schnürch. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J. Contr. Rel. 52:1-16 (1998).

    Google Scholar 

  4. L. L. Wearley. Recent progress in protein and peptide delivery by noninvasive routes. Crit. Rev. Ther. Drug Carrier Syst. 8:331-394 (1991).

    Google Scholar 

  5. M. A. Hussain, M. S. L. Lim, K. S. Raghavan, N. J. Rogers, R. Hidalgo, and C. A. Kettner. A phosphinic acid dipeptide analogue to stabilize peptide drugs during their intranasal absorption. Pharm. Res. 9:626-628 (1992).

    Google Scholar 

  6. W. C. Yen, Y. Higashi, and V. H. L. Lee. Intestinal paracellular peptide transport: Mobilization of intracellular calcium as a mechanism of tight junctional opening by 4-phenylazo-benzoxycarbo-nyl-Pro-Leu-Gly-Pro-D-Arg (Pz-peptide) in the rabbit descending colon and Caco-2 cell monolayers. J. Contr. Rel. 46:5-15 (1997).

    Google Scholar 

  7. S. Lang, R. Oschmann, B. Traving, P. Langguth, and H. P. Merkle. Transport and metabolic pathway of thymocartin (TP4) in excised bovine nasal mucosa. J. Pharm. Pharmacol. 48:1190-1196 (1996).

    Google Scholar 

  8. S. Lang, B. Rothen-Rutishauser, J.-C. Perriard, M. C. Schmidt, and H. P. Merkle. Permeation and pathways of human calcitonin (hCT) across excised bovine nasal mucosa. Peptides 19:599-607 (1998).

    Google Scholar 

  9. S. R. Lang, W. Staudenmann, P. James, H.-J. Manz, R. Kessler, B. Galli, H.-P. Moser, A. Rummelt, and H. P. Merkle. Proteolysis of human calcitonin in excised bovine nasal mucosa: elucidation of the metabolic pathway by liquid secondary ionization mass spectrometry (LSIMS) and matrix assisted laser desorption ionization mass spectometry (MALDI). Pharm. Res. 13:1679-1685 (1996).

    Google Scholar 

  10. J. Heizmann, P. Langguth, A. Biber, R. Oschmann, H. P. Merkle, and S. Wolffram. Enzymatic cleavage of thymopoietin oligopeptides by pancreatic and intestinal brush-border enzymes. Peptides 17:1083-1089 (1996).

    Google Scholar 

  11. I. K. Chun, M. L. Lee, and Y. W. Chien. Methionine enkephalin. I. Kinetics of degradation in buffered solutions and metabolism in various mucosae extracts. Pharm. Res. 7:S-48 (1990).

    Google Scholar 

  12. A. A. Hussain, K. Iseki, M. Kagoshima, and L. W. Dittert. Hydrolysis of peptides in the nasal cavity of humans. J. Pharm. Sci. 79:947-948 (1990).

    Google Scholar 

  13. M. C. Schmidt, H. Peter, S. R. Lang, G. Ditzinger, and H. P. Merkle. In vitro cell models to study nasal mucosal permeability and metabolism. Adv. Drug Del. Rev. 29:51-79 (1998).

    Google Scholar 

  14. A. Hussain, J. Faraj, Y. Aramaki, and J. E. Truelove. Hydrolysis of leucine enkephalin in the nasal cavity of the rat-A possible factor in the low bioavailability of nasally administered peptides. Biochem. Biophys. Res. Commun. 133:923-928 (1985).

    Google Scholar 

  15. M. A. Hussain, R. Seetharam, R. R. Wilk, B. J. Aungst, and C. A. Kettner. Nasal mucosal metabolism and absorption of pentapeptide enkephalin analogs having varying N-terminal amino acids. J. Pharm. Sci. 84:62-64 (1995).

    Google Scholar 

  16. P. Langguth, V. Bohner, J. Heizmann, H. P. Merkle, S. Wolffram, G. L. Amidon, and S. Yamashita. The challenge of proteolysis enzymes in intestinal peptide delivery. J. Contr. Rel. 46:39-57 (1997).

    Google Scholar 

  17. A. Taylor. Aminopeptidases: Structure and function. FASEB J. 7:290-298 (1993).

    Google Scholar 

  18. M. Smyth and G. O'Cuinn. Dipeptidyl aminopeptidase III of guinea-pig brain: specificity for short oligopeptide sequences. J. Neurochem. 63:1439-1445 (1994).

    Google Scholar 

  19. P. S. Burton, R. A. Conradi, and A. R. Hilgers. Transcellular mechanism of peptide and protein absorption: passive aspects. Adv. Drug Deliv. Rev. 7:365-386 (1991).

    Google Scholar 

  20. R. H. Erickson. In M. D. Taylor, G. L. Amidon (eds.), Peptide-based drug design, ACS Washington, DC, 1995; pp 23-46.

    Google Scholar 

  21. S. Kerneis, A. Bogdanova, J. P. Kraehenbuhl, and E. Pringault. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949-952 (1997).

    Google Scholar 

  22. J. Heizmann, H. P. Merkle, and P. Langguth. Permeation of thymo-poietin oligopeptides through Caco-2 cell monolayers. Proceed. Int. Symp. Control. Rel. Bioact. Mater. 681-682 (1998).

  23. W. C. Yen and V. H. L. Lee. Penetration enhancement effect of Pz-peptide, a paracellularly transported peptide, in rabbit intestinal segments and Caco-2 cell monolayers. J. Contr. Rel. 36:25-37 (1995).

    Google Scholar 

  24. S. E. Thompson, J. Cavitt, and K. L. Audus. Leucine enkephalin effects on paracellular and transcellular permeation pathways across brain microvessel endothelial cell monolayers. J. Cardio-vasc. Pharmacol. 24:818-825 (1994).

    Google Scholar 

  25. J. Hochman and P. Artursson. Mechanisms of absorption enhancement and tight junction regulation. J. Contr. Rel. 29:253-267 (1994).

    Google Scholar 

  26. G. A. Heavner, T. Audhya, D. Kroon, and G. Goldstein. Structural requirements for the biological activity of thymopentin analogs. Arch. Biochem. Biophys. 242:248-255 (1985).

    Google Scholar 

  27. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson Molecular biology of the cell, 2 nd edition; Garland Publishing Inc.: New York, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M.C., Rubas, W. & Merkle, H.P. Nasal Epithelial Permeation of Thymotrinan (TP3) Versus Thymocartin (TP4): Competitive Metabolism and Self-Enhancement. Pharm Res 17, 222–228 (2000). https://doi.org/10.1023/A:1007529716926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007529716926

Navigation