Skip to main content
Log in

Effect of oxide grain structure on the high-temperature oxidation of Cr

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Cr was oxidized in 1 aim O2 at 980, 1090, and 1200°C. ElectropolishedCr and some orientations of etched Cr oxidize rapidly and develop compressive stress in the growing Cr2O3; other orientations oxidize slowly, apparently free of stress. SEM examination of fracture sections shows that the thick oxide is polycrystalline whereas the thin oxide on etched Cr is monocrystalline. It is deduced that the monocrystalline oxide grows by lattice diffusion of cations outward, and the polycrystalline layer by the two-way transport of cation diffusion outward and anion diffusion inward along oxide grain boundaries. The consequent formation of oxide within the body of the polycrystalline layer generates compressive stress and leads to wrinkling by plastic deformation. The activation energy for oxidation of Cr by cation lattice transport is 58 kcal/mole. Polycrystalline Cr2O3 forms on Fe-26Cr alloy, whether electropolished or etched; oxidation is accordingly rapid and accompanied by compressive stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Barnes, J. M. Calvert, K. A. Hay, and D. G. Lees,Philos. Mag. 28, 1303 (1973).

    Google Scholar 

  2. K. A. Hay, F. G. Hicks, and D. R. Holmes,Werkst. Korros. 21, 917 (1970).

    Google Scholar 

  3. J. Stringer, A. Z. Hed, G. R. Wallwork, and B. A. Wilcox,Corros. Sci. 12, 625 (1972).

    Google Scholar 

  4. T. F. Kassner, L. C. Walters, and R. E. Grace,Thermodynamics, Proc. Symp. Vienna, 1965 2, 357 (1966).

    Google Scholar 

  5. L. Cadiou and J. Paidassi,Mem. Sci. Rev. Metall. 66, 217 (1969).

    Google Scholar 

  6. D. Mortimer and M. L. Post,Corros. Sci. 8, 499 (1968).

    Google Scholar 

  7. W. C. Hagel,J. Am. Ceram. Soc. 48, 70 (1965).

    Google Scholar 

  8. C. E. Lowell and D. L. Deadmore,Oxid. Met. 7, 55 (1973).

    Google Scholar 

  9. D. Caplan, A. Harvey, and M. Cohen,Corros. Sci. 3, 161 (1963).

    Google Scholar 

  10. D. Caplan and M. Cohen,J. Electrochem. Soc. 112, 471 (1965).

    Google Scholar 

  11. V. R. Howes and C. N. Richardson,Corros. Sci. 9, 385 (1969).

    Google Scholar 

  12. V. R. Howes,Corros. Sci. 10, 99 (1970).

    Google Scholar 

  13. C. S. Giggins and F. S. Pettit,Metall. Trans. 2, 1071 (1971).

    Google Scholar 

  14. D. Caplan and M. Cohen,J. Electrochem. Soc. 112, 471 (1965).

    Google Scholar 

  15. D. Caplan, P. E. Beaubien, and M. Cohen,Trans. Am. Inst. Min. Metall. Pet. Eng. 233, 766 (1965).

    Google Scholar 

  16. A. U. Seybolt,J. Electrochem. Soc. 107, 147 (1960).

    Google Scholar 

  17. J. Stringer, B. A. Wilcox, and R. I. Jaffee,Oxid. Met. 5, 11 (1972).

    Google Scholar 

  18. K. Kitazawa and R. L. Coble,J. Am. Ceram. Soc. 57, 250 (1974).

    Google Scholar 

  19. Y. Oishi and W. D. Kingery,J. Chem. Phys. 33, 480 (1960).

    Google Scholar 

  20. A. E. Paladino and R. L. Coble,J. Am. Ceram. Soc. 46, 133 (1963).

    Google Scholar 

  21. J. Stringer,Corros. Sci. 10, 513 (1970).

    Google Scholar 

  22. P. Hancock and R. C. Hurst,Adv. Corros. Sci. Technol. 4, 1 (1974).

    Google Scholar 

  23. D. Caplan, M. J. Graham, and M. Cohen,J. Electrochem. Soc. 119, 1205 (1972).

    Google Scholar 

  24. M. J. Graham, R. J. Hussey, and M. Cohen,J. Electrochem. Soc. 120, 1523 (1973).

    Google Scholar 

  25. D. Caplan, M. J. Graham, and M. Cohen,Corros. Sci. 10, 1 (1970).

    Google Scholar 

  26. D. Caplan, G. I. Sproule, and R. J. Hussey,Corros. Sci. 10, 9 (1970).

    Google Scholar 

  27. E. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 99, 402 (1952).

    Google Scholar 

  28. E. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 104, 334 (1957).

    Google Scholar 

  29. L. Cadiou and J. Paidassi,Mem. Sci. Rev. Metall. 66, 217 (1969).

    Google Scholar 

  30. C. A. Phalnikar, E. B. Evans, and W. M. Baldwin,J. Electrochem. Soc. 103, 429 (1956).

    Google Scholar 

  31. W. C. Hagel,Trans. Am. Soc. Met. 56, 583 (1963).

    Google Scholar 

  32. W. H. Hatfield,J. Iron Steel Inst. London 115, 483 (1927).

    Google Scholar 

  33. R. Widmer, T. Yukawa, and N. J. Grant,Metall. Soc. Conf. Proc. 11, 183 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caplan, D., Sproule, G.I. Effect of oxide grain structure on the high-temperature oxidation of Cr. Oxid Met 9, 459–472 (1975). https://doi.org/10.1007/BF00611694

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00611694

Key words

Navigation