Skip to main content
Log in

Ion aging effects on the dissociative-attachment instability in CO2 lasers

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Onset of the dissociative-attachment instability requires that the rate coefficient for electron detachment (k d) from negative ions be below a critical value. The predominant negative and positive ions in a CO2∶N2∶He gas-discharge plasma are known to change with time. As secondary by-products form and the predominant negative-ion species changes from CO 3 to NO 2 , a decrease ink d occurs destabilizing the discharge. Since NO 2 and NO 3 are largely unreactive with respect to associative detachment,k d depends in a sensitive fashion on the concentration of certain minority negative ions (O, O 2 ) and neutrals (CO, O, N). The sufficient conditions for the dissociative-attachment instability are much less sensitive to changes in the electron-ion and ion-ion recombination rate coefficients resulting from the ion aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Nighan andW. J. Wiegand,Phys. Rev. A 10 (1974) 922–45.

    Google Scholar 

  2. V. N. Oraevskii, O. I. Fisun andE. I. Yurchenko,Sov. J. Plasma Phys. 1 (1975) 446–9.

    Google Scholar 

  3. G. D. Myl'nikov andA. P. Napartovich,ibid. 1 (1975) 486–91.

    Google Scholar 

  4. D. H. Douglas-Hamilton andS. A. Mani,Appl. Phys. Lett. 23 (1973) 508–10.

    Google Scholar 

  5. Idem, J. Appl. Phys. 45 (1974) 4406–15.

    Google Scholar 

  6. R. A. Haas,Phys. Rev. A 8 (1973) 1017–43.

    Google Scholar 

  7. W. P. Allis,Physica 82C (1976) 43–51.

    Google Scholar 

  8. K. Smith andR. M. Thomson, ‘Computer Modelling of Gas Lasers’ (Plenum, New York, 1978) Ch. 7 and 8.

    Google Scholar 

  9. W. H. Long, W. F. Bailey, D. R. Pond andA. Garscadden, IEEE First International Conference on Plasma Sciences (Knoxville, Tennessee, 1974); published excerpts from this work may be found in W. L. Nighan, ‘Principals of Laser Plasmas’ (Wiley, New York, 1976) Ch. 7, and A. Garscadden, ‘Gaseous Electronics’ Vol. I (Academic Press, New York, 1978) Part 2.2.

  10. A. D. Barkalov andG. G. Gladush,Sov. Phys. Tech. Phys. 24 (1979) 1203–6.

    Google Scholar 

  11. P. Bletzinger, D. A. LaBorde, W. F. Bailey, W. H. Long Jr, P. D. Tannen andA. Garscadden,IEEE J. Quantum Electron. QE-11 (1975) 317–23.

    Google Scholar 

  12. P. E. Luft, Joint Institute for Laboratory Astrophysics, Boulder, Colorado; Information Center Report No. 14 (1975).

  13. E. W. McDaniel andE. A. Mason, ‘The Mobility and Diffusion of Ions in Gases’ (Wiley, New York, 1973).

    Google Scholar 

  14. H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason andL. A. Viehland,Atomic Data Nuclear Data Tables 17 (1976) 177–210.

    Google Scholar 

  15. H. W. Ellis, E. W. McDaniel, D. L. Albritton, L. A. Viehland, S. L. Lin andE. A. Mason,ibid. 22 (1978) 179–217.

    Google Scholar 

  16. F. L. Eisele, H. W. Ellis andE.W. McDaniel,J. Chem. Phys. 70 (1979) 5924–5.

    Google Scholar 

  17. F. L. Eisele, M. D. Perkins andE. W. McDaniel,ibid. 73 (1980) 2517–8.

    Google Scholar 

  18. R. E. Beverly III,Opt. Quantum Electron. 14 (1982) 25–40.

    Google Scholar 

  19. V. V. Breev, V. S. Golubev, S. V. Dvurechenskii andS. V. Pashkin,Sov. J. Plasma Phys. 7 (1981) 111–4.

    Google Scholar 

  20. J. Thoenes andS. C. Kurzius, Lockheed Missiles and Space Company, Huntsville, Alabama, Report No. DRCPM-HEL-CR-79-11 (1979).

  21. J. Thoenes, S. C. Kurzius andO. C. Hofer, Lockheed Missiles and Space Company, Huntsville, Alabama, Report No. H-CR-78-9 (1978).

  22. W. J. Wiegand andW. L. Nighan,Appl. Phys. Lett. 22 (1973) 583–6.

    Google Scholar 

  23. H. Shields andA. L. S. Smith,Appl. Phys. 16 (1978) 111–8.

    Google Scholar 

  24. J. M. Austin andA. L. S. Smith,J. Phys. D: Appl. Phys. 5 (1972) 468–75.

    Google Scholar 

  25. A. L. S. Smith andH. Shields,J. Chem. Phys. 67 (1977) 1594–604.

    Google Scholar 

  26. P. D. Tannen, P. Bletzinger andA. Garscadden,IEEE J. Quantum Electron. QE-10 (1974) 6–11.

    Google Scholar 

  27. J. F. Prince andA. Garscadden,Appl. Phys. Lett. 27 (1975) 13–5.

    Google Scholar 

  28. V. I. Volchenok, V. N. Komanov, S. E. Kupriyanov, A. M. Novosel'tsev andV. I. Stukanog,Sov. J. Plasma Phys. 6 (1980) 241–4.

    Google Scholar 

  29. C. J. Elliot, O. P. Judd, A. M. Lockett andS. D. Rockwood, Los Alamos Scientific Laboratory Report No. LA-5562-MS (1974).

  30. D. Rapp andP. Englander-Golden,J. Chem. Phys. 43 (1965) 1464–79.

    Google Scholar 

  31. J. Schutten, F. J. DeHerr, H. R. Moustafa, A. J. H. Boerboom andJ. Kistemaker,ibid. 44 (1966) 3924–8.

    Google Scholar 

  32. K. Stephan, H. Helm, Y. B. Kim, G. Seykora, J. Ramber andM. Grössl,ibid. 73 (1980) 303–8.

    Google Scholar 

  33. E. Märk, T. D. Märk, Y. B. Kim andK. Stephan,ibid. 75 (1981) 4446–53.

    Google Scholar 

  34. D. Rapp andD. D. Braglia,ibid. 43 (1965) 1480–9.

    Google Scholar 

  35. R. N. Crompton andL. G. Christophorou,Phys. Rev. 154 (1967) 110–6.

    Google Scholar 

  36. E. W. McDaniel, M. R. Flannery, E. W. Thomas, H. W. Ellis, K. J. McCann, S. T. Manson, J. W. Gallagher, J. R. Rumble, E. C. Beaty andT. G. Roberts, ‘Compilation of Data Relevant to Nuclear Pumped Lasers’ Vol. 4, High Energy Laser Laboratory, U.S. Army MIRADCOM Report No. H-78-1 (1978).

  37. L. G. Christophorou, D. L. McCorkle andV. E. Anderson,J. Phys. B: Atom. Molec. Phys. 4 (1971) 1163–75.

    Google Scholar 

  38. A. V. Phelps,Can. J. Chem. 47 (1969) 1783–93.

    Google Scholar 

  39. L. M. Chanin, A. V. Phelps andM. A. Biondi,Phys. Rev. 162 (1962) 219–30.

    Google Scholar 

  40. M. H. Bortner, ‘A Review of Rate Constants of Selected Reactions of Interest in Reentry Flow Fields in the Atmosphere,’ NBS Technical Note 484 (US Department of Commerce, Washington, D.C, 1969).

    Google Scholar 

  41. B. H. Mahan andI. C. Walker,J. Chem. Phys. 47 (1967) 3780–2.

    Google Scholar 

  42. M. McFarland, D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson andA. L. Schmeltekopf,ibid. 59 (1973) 6629–35.

    Google Scholar 

  43. D. L. Albritton,Atomic Data Nuclear Data Tables 22 (1978) 1–101.

    Google Scholar 

  44. H. Shields, A. L. S. Smith andB. Norris,J. Phys. D: Appl. Phys. 9 (1976) 1587–603.

    Google Scholar 

  45. F. Bastien, R. Haug andM. Lecuiller,J. Chim. Phys. 72 (1975) 105–12.

    Google Scholar 

  46. M. A. Biondi, in ‘Principles of Laser Plasmas,’ edited by G. Bekefi (Wiley, New York, 1976) pp. 125–57.

    Google Scholar 

  47. M. A. Biondi, ‘Comments on Atomic and Molecular Physics,’ Part D (Gordon and Breach, New York 1974) p. 85.

    Google Scholar 

  48. D. R. Bates andA. Dalgarno, in ‘Atomic and Molecular Processes,’ edited by D. R. Bates (Academic Press, New York, 1962) pp. 245–79.

    Google Scholar 

  49. G. L. Ogram, J.-S. Chang andR. M. Hobson,Phys. Rev. A 21 (1980) 982–9.

    Google Scholar 

  50. C.-M. Huang, M. A. Biondi andR. Johnsen,ibid. 11 (1975) 901–5.

    Google Scholar 

  51. W. H. Kashner andM. A. Biondi,Phys. Rev. 174 (1968) 139–44.

    Google Scholar 

  52. Estimated in [19, 20] by scaling the few available measurements by the reciprocal square root of the reduced mass of the interacting ions within the positive ion groupings O +2 , NO+ and CO +2 ; see also M. R. Flannery, in “Atomic Processes and Applications,’ edited by P. G. Burke and B. L. Moiseiwitsch (North Holland, Amsterdam, 1976) pp. 409–65.

  53. J. T. Moseley, R. E. Olson andJ. R. Peterson, in ‘Case Studies in Atomic Physics’ Vol. 5, edited by E. W. McDaniel and M. R. C. McDowell (North Holland, Amsterdam, 1975) pp. 1–45.

    Google Scholar 

  54. A. C. Hindmarsh, Lawrence Livermore Laboratory Report No. UCID-30001, Rev. 3 (1974).

  55. A. M. Dykhne andA. P. Napartovich,Sov. Phys. Dokl. 24 (1979) 632–3.

    Google Scholar 

  56. P. S. Landa,Sov. J. Plasma Phys. 5 (1979) 764–7.

    Google Scholar 

  57. V. G. Dresvyannikov andO. I. Fisun,Sov. Phys. JETP 48 (1978) 1078–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beverly, R.E. Ion aging effects on the dissociative-attachment instability in CO2 lasers. Opt Quant Electron 14, 501–513 (1982). https://doi.org/10.1007/BF00610306

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610306

Keywords

Navigation