Skip to main content
Log in

A CO2 laser rangefinder using heterodyne detection and chirp pulse compression

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The sensitivities of heterodyne and direct-detection systems at CO2 laser wavelengths are compared to illuminate the design principles involved. It is shown that destruction of the temporal coherence of scattered radiation is a significant effect when heterodyne systems are used on targets with internal motion. The complete system and the results obtained are then described. The compact optics head contains a waveguide laser, an acousto-optic modulator and SAW chirp devices; it has 45 mm diameter transmit and receive apertures. Whem many returns are integrated, ranges of several kilometres are obtained off natural targets with an accuracy of 10 m. From the Doppler shift off a moving target, radial velocity can be determined simultaneously with the range when an up-chirp/down-chirp technique is used; an accuracy of better than 1 m s−1 is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Taylor, P. H. Davies, D. W. Brown, W. F. Woods, I. D. Bell andC. J. Kennedy,Appl. Optics 17 (1978) 885–9.

    Google Scholar 

  2. M. C. Teich,Proc. IEEE 56 (1968) 37–46.

    Google Scholar 

  3. R. A. Brandwie andW. C. Davies,Appl. Opt. 12 (1972) 1526–33.

    Google Scholar 

  4. R. H. Kingston andL. J. Sullivan,Proc. Soc. Photo. Opt. Instrum. Eng. 69 (1975) 10–3.

    Google Scholar 

  5. J. M. Cruikshank,Appl. Optics 18 (1979) 290–3.

    Google Scholar 

  6. A. J. Hughes, J. O'Shaughnessy andE. R. Pike,IEEE J. Quant. Elect. QE-8 (1972) 909–10.

    Google Scholar 

  7. P. M. Woodward, ‘Probability and Information Theory with Applications to Radar’ (Pergamon Press, London, 1953).

    Google Scholar 

  8. C. E. Cook andM. V. Bernfeld, ‘Radar Signals: an Introduction to Theory and Application’ (Academic Press, New York, 1967).

    Google Scholar 

  9. M. I. Skolnik, ‘Introduction to Radar Systems’ (McGraw-Hill, New York, 1967).

    Google Scholar 

  10. C. J. Oliver,Infrared Phys. 18 (1978) 303–7.

    Google Scholar 

  11. Idem, IEEE Trans. Aerospace Elect. Syst. AES-15 (1979) 306–24.

    Google Scholar 

  12. S. Stein andJ. J. Jones, ‘Modern Communications Principles’ (McGraw-Hill, New York, 1967).

    Google Scholar 

  13. M. Born andE. Wolf, ‘Principles of Optics’ 3rd (revised) edn, (Pergamon, Oxford, 1965) p. 468.

    Google Scholar 

  14. D. R. Hall, R. M. Jenkins andE. K. Gorton,J. Phys. D: Appl. Phys. 11 (1978) 859–69.

    Google Scholar 

  15. D. R. Hall, P. H. Cross, R. M. Jenkins andG. K. Gorton,ibid 10 (1977) 1–6.

    Google Scholar 

  16. B. S. Collins, K. F. Hulme andN. A. Lowde,Opt. Quant. Elect. 12 (1980) 419–26.

    Google Scholar 

  17. S. C. Cohen,Appl. Optics 14 (1975) 1953–9.

    Google Scholar 

  18. G. Parry, RSRE, private communication.

  19. L. V. Blake, ‘A Guide to Basic Pulse-Radar Maximum Range Calculations Part 1’NRL Report 6930, Naval Research Lab, Washington, December (1969) (AD-701-321).

    Google Scholar 

  20. L. F. Fehlner, ‘Marcum and Swerling's Data on Target Detection by a Pulsed Radar’John Hopkins University Applied Physics Laboratory Report, TG 451, July (1962) (AD-602-121).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulme, K.F., Collins, B.S., Constant, G.D. et al. A CO2 laser rangefinder using heterodyne detection and chirp pulse compression. Opt Quant Electron 13, 35–45 (1981). https://doi.org/10.1007/BF00620028

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00620028

Keywords

Navigation