Skip to main content
Log in

Immunological relationships between Artemia RNA polymerases and between RNA polymerases II from different eukaryotic organisms

  • Original Article
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Rabbit antibodies against Artemia RNA polymerase II have been raised and utilized to study the immunological relationships between the subunits from RNA polymerases I, II and III from this organism and RNA polymerase II from other eukaryotes. We describe here for the first time the subunit structure of Artemia RNA polymerases I and III. These enzymes have 9 and 13 subunits respectively. The anti-RNA polymerase II antibodies recognize two subunits of 19.4 and 18 kDa common to the three enzymes, and another subunit of 25.6 kDa common to RNA polymerases II and III. The antibodies against Artemia RNA polymerase II also react with the subunits of high molecular weight and with subunits of around 25 and 33 kDa of RNA polymerase II from other eukaryotes (Drosophila melanogaster, Chironomus thummi, triticum (wheat) and Rattus (rat)). This interspecies relatedness is a common feature of eukaryotic RNA polymerases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RNAp:

RNA polymerase

DPT:

diazophenylthioether

SDS:

sodium dodecylsulfate

References

  1. Guilfoyle TJ In. Jacob ST (ed) Enzymes of nucleic acid synthesis and modification. Vol. II, CRC Press, Boca Raton, Florida, 1983, pp 1–42

    Google Scholar 

  2. Rose KM, Stetler DA, Jacob ST In. Jacob ST (ed) Enzymes of nucleic acid synthesis and modification. Vol. II, CRC Press, Boca Raton, Florida, 1983 pp 43–74

    Google Scholar 

  3. Lewis MK, Burgess RR In. Boyer PD (ed) The Enzymes, 3rd edition. Vol. XV, Academic Press, New York, 1982, pp 109–153

    Google Scholar 

  4. Heintz N, Roeder RG In. Setlow JK, Hollaender A (eds) Genetic Engineering. Vol. 4, Plenum Press, New York, 1982, pp 57–89

    Google Scholar 

  5. Huet J, Sentenac P, Fromageot P: J Biol Chem 257:2613–2618, 1982

    Google Scholar 

  6. Weeks JR, Coulter DE, Greenleaf AL: J Biol Chem 257:5884–5891, 1982

    Google Scholar 

  7. Guilfoyle TJ, Hagen G, Malcolm S: J Biol Chem 259:640–648, 1984

    Google Scholar 

  8. Young RA, Davis RW: Science 222:778–782, 1983

    Google Scholar 

  9. Ingles CJ, Himmelfarb HJ, Shales M, Greenleaf AL, Friesen JD: Proc Natl Acad Sci USA 81:2157–2161, 1984

    Google Scholar 

  10. Searles LL, Jokerst RS, Bingham PM, Woelker RA, Greenleaf AL: Cell 31:585–592, 1982

    Google Scholar 

  11. Corden JL, Cadena DL, Ahearn JM, Dahmus ME: Proc Natl Acad Sci USA 82:7934–7938, 1985

    Google Scholar 

  12. Cho KWY, Khalili K, Zandomeni R, Weinmann R: J Biol Chem 260:15204–15210, 1985

    Google Scholar 

  13. Riva M, Memet S, Micouin J-Y, Huet J, Treich I, Dassa J, Young R, Buhler J-M, Sentenac A, Fromageot P: Proc Natl Acad Sci USA 83:1554–1558, 1986

    Google Scholar 

  14. Allison LA, Moyle M, Shales M, Ingles CJ: Cell 42:599–610, 1985

    Google Scholar 

  15. Broyles SS, Moss B: Proc Natl Acad Sci USA 83:3141–3145, 1986

    Google Scholar 

  16. Ingles CJ, Biggs J, Wong JK-C, Weeks JR, Greenleaf AL: Proc Natl Acad Sci USA 80:3396–3400, 1983

    Google Scholar 

  17. Renart J, Sebastían J: Cell Differentiation 5:97–107, 1976

    Google Scholar 

  18. Osuna C, Sebastían J: Eur J Biochem 109:383–389, 1980.

    Google Scholar 

  19. Cruces J, Díaz V, Quintanilla M, Renart J, Sebastian J: Eur J Biochem 141:279–282, 1984

    Google Scholar 

  20. Kramer A, Bautz EKF: Eur J Biochem 117:449–455, 1981

    Google Scholar 

  21. Hodo III HG, Blatti SP: Biochemistry 16:2334–2342, 1977

    Google Scholar 

  22. Weaver RF, Blatti SP, Rutter WJ: Proc Natl Acad Sci USA 68:2994–2999, 1971

    Google Scholar 

  23. Hjelm H, Hjelm K, Sjöquist J: FEBS Lett 28:73–76, 1972

    Google Scholar 

  24. Laemmli UK: Nature 227:680–685, 1970.

    PubMed  Google Scholar 

  25. Neville DM: J Biol Chem 246:6328–6334, 1971

    Google Scholar 

  26. Seed B in. JK Setlow, A Hollaender (eds.) Genetic Engineering. Vol. 4, Plenum Press, New York, 1982, pp 91–102

    Google Scholar 

  27. Reiser J, Wardale J: Eur J Biochem 114:569–575, 1981

    Google Scholar 

  28. Read JM, Northcote DH: Anal Biochem 116:53–64, 1981

    Google Scholar 

  29. Gundelfinger E, Saumweber H, Dallendörfer A, Stein H: Eur J Biochem 111:395–401, 1980

    Google Scholar 

  30. Skler VEF, Jeachning JA, Gaje LP, Roeder RG: J Biol Chem 251:3794–3800, 1976

    Google Scholar 

  31. Ingles CJ: Biochem Biophys Res Comm 55:364–371, 1973

    Google Scholar 

  32. Renart MF, Sastre L, Diaz V, Sebastian J: Mol Cell Biochem 66:21–29, 1985

    Google Scholar 

  33. De Chaffoy D, Heip J, Moens L, Kondo M In. Persoone G, Sorgeloos P, Roels O, Jaspers E (eds) The Brine Shrimp Artemia. Vol. 2, Universa Press, Wetteren, Belgium, 1980, pp 379–394

    Google Scholar 

  34. Tasheva B, Desser G: Anal Biochem 129:98–102, 1983

    Google Scholar 

  35. Brodner OG, Weiland T: Biochemistry 15:3480–3484, 1976

    Google Scholar 

  36. Greenleaf AL: J Biol Chem 258:13403–13406, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, V., Quintanilla, M., Cruces, J. et al. Immunological relationships between Artemia RNA polymerases and between RNA polymerases II from different eukaryotic organisms. Mol Cell Biochem 76, 123–131 (1987). https://doi.org/10.1007/BF00223477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00223477

Key words

Navigation