Skip to main content
Log in

Transcriptional regulation and autoregulation of the human gene for ADP-ribosyltransferase

  • Part II: Poly(ADP-ribosyl)ation
  • D. Poly(ADP-ribose) Polymerase Gene Regulation
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human nuclear poly(ADP-ribosyl)transferase (ADPRT) modifies proteins with branched ADP-ribose-polymers. Various proteins, including ADPRT itself, serve as acceptors for polyADP-ribose. Target proteins include those controlling basic cellular processes such as DNA repair, differentiation and proliferation. Because of the outstanding features of this enzyme: automodification, several functional domains and central role in physiology of the cell, the molecular biology of ADPRT gained wide interest. The promoter structure contains several CCAAT/TATA boxes and SP1 sites. However, there is no CCAAT/TATA box in the neighbourhood of an SP1 site and, thus no obvious site for initiation of transcription. Within this region there are several noteworthy inverted repeats, which by internal basepairing could form two types of cruciform structures. Deletion analysis revealed that these cruciform structures have functional significance. Removal of one type increases the promoter activity, whereas removal of the other diminishes the promoter function.

Overexpression of ADPRT from heterologous promoters (MMTV, SV40) leads to repression of the activity of the ADPRT promoter. Indeed, ADPRT was shown to bind specifically to one type of cruciform structure. This specific interaction indicates autorepression of the ADPRT gene: the enzyme ADPRT acts directly as a negative modulator of the activity of its own promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Althaus FR, Richter C: ADP-ribosylation of proteins: Enzymology and biological significance. Molecular Biol Biochem and Biophys 37:1–226, 1987

    Google Scholar 

  2. Burtscher HJ, Klocker H, Schneider R, Auer B, Hirsch-Kauffmann M, Schweiger M: ADP-ribosyltransferase from Helix pomatia. Purification and characterization. Biochem J 248:859–864, 1987

    PubMed  Google Scholar 

  3. Burtscher HJ, Schneider R, Klocker H, Auer B, Hirsch-Kauffmann M, Schweiger M: ADP-ribosyltransferase is highly conserved: Purification and characterization of ADP-ribosyltransferase from a fish and its comparison with the human enzyme. J Comp Physiol Biol 157:567–572, 1987

    Google Scholar 

  4. Gradwohl G, Ménissier-De Murcia JM, Molinete M, Simonin F, Koken M, Hoeijmakers JHJ, De Murcia G: The second zinc-finger domain of Poly (ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Sci USA 87:2990–2994, 1990

    Google Scholar 

  5. Sastry SS, Kun E: The interaction of adenosine diphosphoribosyl transferase (ADPRT) with a cruciform DNA. Biochem Biophys Res Commun 167:842–847, 1990

    PubMed  Google Scholar 

  6. Herzog H, Zabel BU, Schneider R, Auer B, Hirsch-Kauffmann M, Schweiger M: Human nuclear NAD+ ADP-ribosyltranferase: Localization of the gene on chromosome 1q41-q42 and expression of an active human enzyme inEscherichia coli. Proc Natl Acad Sci USA 86: 3514–3518, 1989

    PubMed  Google Scholar 

  7. Schweiger M, Auer B, Herzog H, Hirsch-Kauffmann M, Kaiser P, Flick K, Nagl U, Schneider R: Molecular biology of human Nuclear NAD+: ADP-Ribosyl-transferase (Polymerizing). In G.G. Poirier and P. Moreau (eds) ADP-Ribosylation Reactions. Springer-Verlag, New York, 1992, pp 20–30

    Google Scholar 

  8. Bhatia K, Pommier Y, Giri C, Fornance AJ, Imaizumi M, Breitmann TR, Cherney B, Smulson M: Expression of the poly(ADP-ribose) polymerase gene following natural and induced DNA strand breakage and effect of hyperexpression on DNA repair. Carcinogenesis 11:123–128, 1990

    PubMed  Google Scholar 

  9. Negroni M, Bertazzoni U: Differential expression and stability of poly (ADP-ribose) polymerase mRNA in human cells. Biochimica et Biophysica Acta 1173:133–140, 1993

    PubMed  Google Scholar 

  10. Wein KH, Netzker R, Brand K: Cell cycle-related expression of poly(ADP-ribosyl)transferase in proliferating rat thymocytes. Biochimica et Biophysica Acta 1176:69–76, 1993

    PubMed  Google Scholar 

  11. Burtscher HJ, Auer B, Klocker H, Schweiger M, Hirsch-Kauffmann M: Isolation of ADP-ribosyltransferase by affinity chromatography. Anal Biochem 152:285–290, 1986

    PubMed  Google Scholar 

  12. Schneider R, Auer B, Kühne C, Herzog H, Klocker H, Burtscher HJ, Hirsch-Kauffmann M, Wintersberger U, Schweiger M: Isolation of a cDNA clone for human NAD+: protein ADP-ribosyltransferase. Eur J Cell Biol 44: 302–307, 1987

    PubMed  Google Scholar 

  13. Alkhatib HM, Chen D, Cherney B, Bhatia K, Notario V, Giri C, Stein G, Slattery E, Roeder RG, Smulson M: Cloning and expression of cDNA for human poly (ADP-ribose) polymerase. Proc Natl Acad Sci USA 84: 1224–1228, 1987

    PubMed  Google Scholar 

  14. Kurosaki T, Ushiro H, Mitsuchi Y, Suzuki S, Matsuda M, Matsuda Y, Katanuma N, Kanugawa K, Matsuo H, Hirose T, Inayama S, Shizuta Y: Primary structure of human poly (ADP-ribose) synthetase deduced from cDNA sequence. J Biol Chem 262:15990–15997, 1987

    PubMed  Google Scholar 

  15. Uchida K, Morita T, Sato T, Ogura T, Yamashita R, Noguchi S, Suzuki H, Nyunoya H, Miwa M, Sugimura T: Nucleotide sequence of a full-length DNA for human fibroblast poly (ADP-ribose)-polymerase. Biochem Biophys Res Comm 148:617–622, 1987

    PubMed  Google Scholar 

  16. Auer B, Nagl U, Herzog H, Schneider R, Schweiger M: Human nuclear NAD+ ADP-ribosyltransferase(polymerizing): Organization of the gene. DNA 8:575–580, 1989

    PubMed  Google Scholar 

  17. Struve I, Rausch T, Bernasconi, P, Taiz L: Structure and function of the promoter of the Carrot V-type H+-ATPase catalytic subunit gene. J Biol Chem 265:7927–7932, 1990

    PubMed  Google Scholar 

  18. Gourse RL, Sharrock RA, Nomura M: Control of Ribosome Synthesis inEscherichia coli In B., Hardesty and G. Kramer (eds). Structure and Function, and Genetics of Ribosomes. Springer-Verlag, New York, 1985, pp 766–788

    Google Scholar 

  19. Fainsod A, Leonhard DB, Ruusala T, Lubin M, Crothers D, Ruddle FH: The homeo domain of a murine protein binds 5′ to its own homeo box. Proc Natl Acad Sci USA 83:9532–9536, 1986

    PubMed  Google Scholar 

  20. Magasanik B: Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogene utilization. TIBS 13: 475–479, 1988

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oei, S.L., Herzog, H., Hirsch-Kauffmann, M. et al. Transcriptional regulation and autoregulation of the human gene for ADP-ribosyltransferase. Mol Cell Biochem 138, 99–104 (1994). https://doi.org/10.1007/BF00928449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00928449

Key words

Navigation