Skip to main content
Log in

The volume and compressibility change for the formation of the LaSO +4 ion pair at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The apparent molal volumes (φv) and adiabatic compressibilities [φK(S)] of La2(SO4)3 solutions have been determined from density and sound speed data at 25°C. The large positive deviations of φv and φK(S) of La2(SO4)3 from the limiting law have been attributed to the formation of the ion pair LaSO +4 . The observed values of φv and φK(S) have been used to estimate the change in the apparent molal volume and adiabatic compressibility for the formation of LaSO +4 from

$$\Delta \phi (LaSO_4^ + ) = [\phi (obs.) - \phi (2La^{3 + } ,3SO_4^{2 - } )]/\alpha$$

where ϕ(2La3+, 3SO 2−4 ) is the apparent molal volume or adiabatic compressibility of the free ions, and α is the degree of association. The value of\(\Delta \phi _v^o (LaSO_4^ + ) = \Delta \bar V^o (LaSO_4^ + ) = 22.8 \pm 1cm^3 - mole^{ - 1}\) and\(\Delta \phi _{K(S)}^o (LaSO_4^ + ) = \Delta \bar K_S^o (LaSO_4^ + ) = 85 \pm 20 \times 10^{ - 4} cm^3 - mole^{ - 1} - bar^{ - 1}\) at infinite dilution are in reasonable agreement with the values determined from the high-pressure conductance data of Fisher and Davis. The number of hydrated water molecules (ca. 11) associated with the formation of LaSO +4 determined from the volume and compressibility data are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. Fisher,J. Phys. Chem. 66, 1607 (1962).

    Google Scholar 

  2. F. H. Fisher and D. F. Davis,J. Phys. Chem. 69, 2595 (1965);71, 819 (1967).

    Google Scholar 

  3. F. H. Fisher and A. P. Fox,J. Solution Chem. 4, 225 (1975); in press (1977).

    Google Scholar 

  4. C. F. Hale and F. H. Spedding,J. Phys. Chem. 76, 2925 (1972).

    Google Scholar 

  5. S. D. Hamann, P. J. Pearce, and W. Strauss,J. Phys. Chem. 68, 375 (1964).

    Google Scholar 

  6. F. J. Millero,J. Phys. Chem. 74, 356 (1970).

    Google Scholar 

  7. F. J. Millero,Limnol. Oceanogr. 14, 376 (1969).

    Google Scholar 

  8. F. J. Millero,Geochim. Cosmochim. Acta 34, 1261 (1970).

    Google Scholar 

  9. W. L. Masterton, H. Welles, J. H. Knox, and F. J. Millero,J. Solution Chem. 3, 91 (1974).

    Google Scholar 

  10. F. J. Millero and W. L. Masterton,J. Phys. Chem. 78, 1287 (1974).

    Google Scholar 

  11. G. K. Ward and F. J. Millero,Geochim. Cosmochim. Acta 39, 1595 (1975).

    Google Scholar 

  12. F. J. Millero, F. Gombar, and J. Oster,J. Solution Chem. 6, 269 (1977).

    Google Scholar 

  13. F. J. Millero,Rev. Sci. Instrum. 38, 1441 (1967).

    Google Scholar 

  14. F. J. Millero,J. Phys. Chem. 71, 4567 (1967).

    Google Scholar 

  15. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  16. F. J. Millero and T. Kubinski,J. Acoust. Soc. Am. 57, 312 (1975).

    Google Scholar 

  17. V. A. Del Grosso and C. W. Mader,J. Acoust. Soc. Am. 52, 1442 (1972).

    Google Scholar 

  18. F. Vaslow,J. Phys. Chem. 70, 2286 (1966).

    Google Scholar 

  19. L. A. Dunn,Trans. Faraday Soc. 64, 2951 (1968);63, 2348 (1966).

    Google Scholar 

  20. F. Franks and H. T. Smith,Trans. Faraday Soc. 63, 2586 (1967).

    Google Scholar 

  21. F. J. Millero and J. H. Knox, unpublished results.

  22. F. H. Spedding, M. J. Pikal, and B. O. Ayres,J. Phys. Chem. 70, 2440 (1966).

    Google Scholar 

  23. F. J. Millero,Chem. Rev. 71, 147 (1971).

    Google Scholar 

  24. R. M. Pytkowicz and D. R. Kester,Am. J. Sci. 267, 217 (1969).

    Google Scholar 

  25. E. J. Reardon,J. Phys. Chem. 79, 422 (1975).

    Google Scholar 

  26. F. J. Millero, G. K. Ward, and P. V. Chetirkin,J. Acoust. Soc. Am., in press (1977).

  27. I. L. Jenkins and C. B. Monk,J. Am. Chem. Soc. 72, 2695 (1950).

    Google Scholar 

  28. F. H. Spedding and S. Jaffe,J. Am. Chem. Soc. 76, 882 (1954).

    Google Scholar 

  29. R. A. Robinson and R. H. Stokes,Electrolyte Solutions (Butterworths, London, 1959).

    Google Scholar 

  30. C. W. Davies,Ion Association (Butterworths, London, 1962).

    Google Scholar 

  31. J. Kielland,J. Am. Chem. Soc. 59, 1675 (1937).

    Google Scholar 

  32. K. S. Pitzer and G. Mayorga,J. Phys. Chem. 77, 2300 (1973).

    Google Scholar 

  33. E. C. Righellato and C. W. Davies,Trans. Faraday Soc. 26, 592 (1930).

    Google Scholar 

  34. F. J. Millero, inWater and Aqueous Solutions, R. A. Horne, ed. (Wiley, New York, 1972).

    Google Scholar 

  35. F. J. Millero, G. K. Ward, F. K. Lepple, and E. V. Hoff,J. Phys. Chem. 78, 1636, (1974).

    Google Scholar 

  36. J. V. Leyendekkers,Thermodynamics of Seawater (Marcel Dekker, New York, 1976).

    Google Scholar 

  37. M. Eigen and K. Tamm,Z. Elektrochem. 66, 93 (1962).

    Google Scholar 

  38. D. P. Fay, D. Litchinsky, and N. Purdie,J. Phys. Chem. 73, 544 (1969).

    Google Scholar 

  39. D. P. Fay and N. Purdie,J. Phys. Chem. 74, 1160 (1970).

    Google Scholar 

  40. K. Tamm,6th International Congress on Acoustics, Tokyo, Japan, PGP-25 (1968).

  41. L. G. Helper,J. Phys. Chem. 61, 1426 (1957).

    Google Scholar 

  42. L. Pauling,The Nature of the Chemical Bond, 3rd ed. (Freeman, San Francisco, 1970).

    Google Scholar 

  43. J. Padova,J. Chem. Phys. 39, 1552 (1963);40, 691 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CT., Millero, F.J. The volume and compressibility change for the formation of the LaSO +4 ion pair at 25°C. J Solution Chem 6, 589–607 (1977). https://doi.org/10.1007/BF00655373

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655373

Key Words

Navigation