Skip to main content
Log in

Saturable kinetics of intravenous chlorothiazide in the rhesus monkey

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A range of bolus doses of 14 C-chlorothiazide and unlabeled drug (6.7–30 mg/kg) were administered to each of three unanesthetized rhesus monkeys with and without concurrent probenecid dosing. Plasma up to 4 h and urine up to 24 h were sampled frequently. Apparent terminal plasma half-lives ranged from 18 to 25 min in the absence of probenecid. No apparent trend was noted for the volume of distribution of the central compartment calculated from estimated plasma concentrations at time zero. For chlorothiazide studies, an average of 92% of the dose was recovered in urine by 24 hr. Plasma and urinary clearances at low doses were 20 to 50% higher than those found with higher doses. These dose-dependent clearances for chlorothiazide were found at doses parallel to the most often prescribed clinical doses in humans on a g chlorothiazide per kg body weight basis. Clearances in the presence of probenecid decreased two-to four-fold over those seen without probenecid. Incremental renal clearances of chlorothiazide in the studies with and without probenecid were also evaluated. Curvilinear segments characteristic of dose-dependent kinetics were demonstrated in graphs of urinary excretion rate versus plasma concentrations. Values of Michaelis-Menten constants Vmax and Km were calculated for renal excretion of chlorothiazide by active transport after intravenous doses in all three monkeys. The contribution of glomerular filtration to chlorothiazide renal clearance was found to be negligible. Values of the constant KI (the concentration of the probenecid competitive inhibitor of chlorothiazide, which doubles the apparent Km value of chlorothiazide) were calculated using the previously calculated Vmax and Km values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. C. Novelle, and J. M. Sprague. Benzothiadiazine dioxides as novel diruretics.J. Am. Chem. Soc. 79:2028–2029 (1957).

    Article  Google Scholar 

  2. L. S. Goodman and A. Gilman.The Pharmacological Basis of Therapeutics, 5th ed., Macmillan, New York, 1975, pp. 828–832.

    Google Scholar 

  3. L. Joubert, and C. Radouco-Thomas. A study in human pharmacology: evaluation of four diuretics and a placebo.Canad. Med. Assoc. J. 99:57–63 (1968).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. R. I. Ogilvie and J. Ruedy. Treatment of hypertension with hydrochlorothiazide and spironolactone.Canad. Med. Assoc. J. 101:61–64 (1969).

    CAS  PubMed Central  PubMed  Google Scholar 

  5. P. Kincaid-Smith. The use of duretics in pregnancy.Excerpta Medica 286:281–293 (1973).

    Google Scholar 

  6. S. Sherlock, “Diuretics in Hepatic Disease,”Excerpta Medica 268:270–280 (1973).

    Google Scholar 

  7. D. Beevers, J. Harpur, and M. Hamilton. The long-term treatment of hypertension with thiazide diuretics.Postgrad. Med. J. 47:639–643 (1971).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. J. H. Laragh. The mode of action and use of chlorothiazide and related compounds.Circulation 26:121–132 (1962).

    Article  CAS  PubMed  Google Scholar 

  9. F. C. Reubi. The action and use of diuretics in renal disease.Prog. Cardiovasc. Dis. 3: 563–579 (1961).

    Article  CAS  PubMed  Google Scholar 

  10. L. E. Earley and J. Orloff. Thiazide diuretics,Ann. Rev. Med. 15:149–166 (1964).

    Article  CAS  PubMed  Google Scholar 

  11. K. H. Beyer, Jr. and J. E. Baer. The site and mode of action of some sulfonamide-derived diuretics.Med. Clin. N. Am. 59:735–750 (1975).

    CAS  PubMed  Google Scholar 

  12. J. M. Weller and R. L. Malvin. Effects and side-effects of thiazide drugs.Med. Clin. N. Am. 53:1321–1330 (1969).

    CAS  Google Scholar 

  13. A. Ando, Y. Orita, Y. Takamitsu, S. Urakabe, D. Shirai, and H. Abe. A quantum chemical study extended to the sulfamyl group of thiazide diuretics.Jap. Cire. J. 34:609–612 (1970).

    Article  CAS  Google Scholar 

  14. Y. Orita, A. Ando, Y. Takamitsu, D. Shirai, S. Urakabe, and H. Abe. Studies on Huckel's molecular-orbital calculation (3dπ -2pπ) of the sulfamyl part of thiazide diuretics.Japn. Circ. J. 36:187–190(1972).

    Article  CAS  Google Scholar 

  15. Y. Orita, A. Ando, Y. Takamitsu, D. Shirai, S. Urakabe, T. Furukawa, and H. Abe. A quantum-biological analysis of thiazide diuretics and ethacrynic acid,Japn. Circ. J. 32:547–554 (1968).

    Article  CAS  Google Scholar 

  16. Y. Orita, A. Ando, Y. Takamitsu, S. Urakabe, T. Furukawa, and H. Abe. A quantumbiological study of the pharmacological action of thiazide diuretics,Japn. Circ. J. 31:441–446 (1967).

    Article  CAS  Google Scholar 

  17. H. R. Brettell, J. K. Aikawa, and G. S. Gordon. Studies with chlorothiazide tagged with radioactive carbon (C14) in human beings.Arch. Intern. Med. 106:57–63 (1960).

    Article  CAS  PubMed  Google Scholar 

  18. R. K. Nayak and L. Z. Benet. Use of the unanesthetized rhesus monkey as a model for studying the gastrointestinal absorption of drugs.J. Pharmacokin. Biopharm. 2:417–431 (1974).

    Article  CAS  Google Scholar 

  19. J. E. Baer, H. L. Leidy, A. V. Brooks, and K. H. Beyer. The physiological disposition of chlorothiazide (Diuril) in the dog.J. Pharmacol. Exp. Ther. 125:295–302 (1959).

    CAS  PubMed  Google Scholar 

  20. A. G. Zacchei and L. Weidner. GLC determination of probenecid in biological fluids.J. Pharm. Sci. 62:1972–1975 (1973).

    Article  CAS  PubMed  Google Scholar 

  21. C-W. N. Chiang. The interpretation of pharmacokinetic parameters for a drug showing dose-dependent kinetics: studies with probenecid. Thesis, University of California, San Francisco, 1976, pp. 26, 40.

    Google Scholar 

  22. W. J. Dixon, ed.BMD Biomedical Computer Programs, University of California Press, Berkeley, 1974, pp. 677–692.

    Google Scholar 

  23. D. E. Pickering, and H. H. Sussman. Cited in G. H. Bourne, ed.,The Rhesus Monkey, Vol. 1. Anatomy and Physiology, Academic Press, New York, 1975, p. 138–139.

    Google Scholar 

  24. Weigel, Hansen and Smith (1966). Cited in G. H. Bourne, ed.,The Rhesus Monkey, Vol. 1. Anatomy and Physiology, Academic Press, New York, 1975, p. 61.

    Google Scholar 

  25. I. H. Stockley. Mechanisms of drug interaction in the pharmacokinetic phase of drug activity.Am. J. Hosp. Pharm. 27:977–985 (1970).

    CAS  PubMed  Google Scholar 

  26. K. S. Pang, M. Rowland, and T. N. Tozer, In Vivo Evaluation of Michaelis-Menten Constants of Hepatic Drug-Eliminating Systems,Drug Metab. Dispos. 6:197–200 (1978).

    CAS  PubMed  Google Scholar 

  27. J. R. Gillette. Techniques for studying drug metabolism in vitro. In B. LaDu, H. Mandel, and E. Way, (eds.),Fundamentals of Drug Metabolism and Drug Disposition, Williams & Wilkins, Baltimore, 1971, pp. 405–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH grants GM 26691 and AM 20884. During the course of this work, Dr. Gustafson received support as an NIH Predoctoral Fellow (GM 00752) and as a Fellow of the American Foundation for Pharmaceutical Education.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafson, J.H., Benet, L.Z. Saturable kinetics of intravenous chlorothiazide in the rhesus monkey. Journal of Pharmacokinetics and Biopharmaceutics 9, 461–476 (1981). https://doi.org/10.1007/BF01060889

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060889

Key words

Navigation