Skip to main content
Log in

Saturable rate of cefatrizine absorption after oral administration to humans

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

This study examined the absorption kinetics of cefatrizine, an amino-β-lactam antibiotic, after oral administration of a single 500-mg dose to 12 healthy volunteers. Plasma concentrations were determined by high performance liquid chromatography. The plots of the percentage of drug unabsorbed and the apparent rate of cefatrizine absorption as a function of time showed, first, a delay and, then, an almost constant rate of absorption with a tendency to move toward first-order kinetics at the end of the process. Three compartmental models incorporating a lag time and first-order elimination kinetics, but differing in their input rate, were used for analysis of the time course of cefatrizine plasma concentrations. The model with first-order absorption kinetics was clearly inadequate. The results were improved with the model for which the rate of absorption is constant, but a model incorporating saturable absorption kinetics of the Michaelis-Menten type improved the fit further. This last model was statistically superior to the constant-rate input model in 6 out of 12 subjects, according to the likelihood-ratio method. Because of the innovative feature of the model incorporating the Michaelis-Menten equation, simulations of the effect of altering the model parameters and the dose administered on the concentration-time profile, were performed. Different hypotheses which might explain why cefatrizine absorption kinetics fits the Michaelis-Menten equation were examined. The observation of saturable absorption kinetics is consistent with a carrier-mediated transport previously reported to occur in the gastrointestinal tract of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rowland and T. N. Tozer.Clinical Pharmacokinetics: Concepts and Applications, 2nd ed., Lea & Febiger, Philadelphia, 1989, p. 34.

    Google Scholar 

  2. P. J. McNamara, W. A. Colburn, and M. Gibaldi. Absorption kinetics of hydroflumethiazide.J. Clin. Pharmacol. 18:190 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. M. Ehrnebo, S. O. Nilsson, and L. O. Boréus. Pharmacokinetics of ampicillin and its prodrugs bacampicillin and pivampicillin in man.J. Pharmacokin. Biopharm. 7:429–451 (1979).

    Article  CAS  Google Scholar 

  4. H. Ehrsson, S. O. Nilsson, M. Ehrnebo, I. Wallin, and G. Wennerstein. Effect of food on kinetics of 8-methoxsalen.Clin. Pharmacol. Ther. 25:167–171 (1979).

    CAS  PubMed  Google Scholar 

  5. J. P. Reymond, J. L. Steimer, and W. Niederberger. On the dose dependency of cyclosporin A absorption and disposition in healthy volunteers.J. Pharmacokin. Biopharm. 16:331–353 (1988).

    Article  CAS  Google Scholar 

  6. E. Krüger-Thiemer. Kinetic aspects of absorption, distribution and elimination of drugs. InKinetics of Drug Action, Springer-Verlag, Berlin, 1977, p. 98.

    Google Scholar 

  7. S. Shadomy, G. Wagner, and M. Caver. In vitro activities of five oral cephalosporins against aerobic pathogenic bacteria.Antimicrob. Agents Chemother. 12:609–613 (1977).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. J. P. Santella and B. Tanrisever. Cefatrizine, a clinical overview.Drugs Exp. Clin. Res. 11:441–446 (1985).

    CAS  PubMed  Google Scholar 

  9. V. Mastrandrea. Pharmacokinetics of ceftrizine after oral administration in human volunteers.Int. J. Clin. Pharmacol. Res. 5:319–323 (1985).

    CAS  PubMed  Google Scholar 

  10. R. C. Gaver and G. Deeb. Disposition of carbon-14 labelled cefatrizine in man.Drug Metab. Dispos. 8:157–162 (1980).

    CAS  PubMed  Google Scholar 

  11. M. Pfeffer, R. C. Gaver, and J. Ximenez. Human intravenous pharmacokinetics and absolute oral bioavailability of cefatrizine.Antimicrob. Agents Chemother. 24:915–920 (1983).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. W. Couet, B. G. Reigner, M. A. Lefebvre, J. Bizouard, and J. B. Fourtillan. Pharmacocinétique de la cefatrizine administrée en doses répétées.Pathol. Biol. 36:513–516 (1988).

    CAS  PubMed  Google Scholar 

  13. T. Kimura, T. Yamamoto, M. Mizuno, Y. Suga, S. Kitade, and H. Sezaki. Characterisation of aminocephalosporin transport across rat small intestine.J. Pharmaco. biodyn. 6:246–253 (1983).

    Article  CAS  Google Scholar 

  14. A. Tsuji and T. Yamana. Gastrointestinal absorption ofβ-lactam antibiotics. In S. Mitshuhashi (ed.),Beta-Lactam Antibiotics, Japan Scientific Societies Press, Tokyo, Springer-Verlag, Berlin, 1981, pp. 235–258.

    Google Scholar 

  15. J. Sjövall, G. Alvan, and D. Westerlund. Oral cyclacillin interacts with the absorption of oral ampicillin, amoxicillin and bacampicillin.Eur. J. Clin. Pharmacol. 29:495–502 (1985).

    Article  PubMed  Google Scholar 

  16. J. G. Wagner and E. Nelson. Percent absorbed time plots derived from blood level and/or urinary excretion data.J. Pharm. Sci. 52:610–611 (1963).

    Article  CAS  PubMed  Google Scholar 

  17. M. Gibaldi and D. Perrier, Pharmacokinetics, 2nd ed., Marcel-Dekker, New York, 1982, pp. 34, 42.

    Google Scholar 

  18. G. E. Forsyte, M. A. Malcolm, and C. B. Moler.Computer Methods for Mathematical Computations, Prentice-Hall, Engelwood Cliffs, NJ, 1977.

    Google Scholar 

  19. R. Gomeni. An interactive program for individual and population parameter estimation. In M. J. Von Bommel, N. O. Ball, and N. Wigertz (eds.),Medinfo 83, North-Holland, Amsterdam 1983, pp. 1022–1025.

    Google Scholar 

  20. M. J. D. Powell. An efficient method for finding the minimum of a function of several variables without calculating derivatives.Comput. J. 7:155–162 (1964).

    Article  Google Scholar 

  21. L. B. Sheiner. Analysis of pharmacokinetics data using parametric models. II. Point estimates of an individual's parameters.J. Pharmacokin. Biopharm. 13:515–540 (1985).

    Article  CAS  Google Scholar 

  22. H. G. Boxenbaum, S. Riegelman, and R. M. Elashoff. Statistical estimation in pharmacokinetics.J. Pharmacokin. Biopharm. 2:123–149 (1974).

    Article  CAS  Google Scholar 

  23. L. B. Sheiner. Analysis of pharmacokinetics data using parametric models. III. Hypothesis tests and confidence intervals.J. Pharmacokin. Biopharm. 14:539–555 (1986).

    Article  CAS  Google Scholar 

  24. V. W. Steinijans and E. Diletti. Statistical analysis of bioavailability studies: parametric and nonparametric confidence interval.Eur. J. Clin. Pharmacol. 24:127–136 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. J. C. K. Loo and S. Riegelman. New method for calculating the intrinsic absorption rate of drugs.J. Pharm. Sci. 57:918–928 (1968).

    Article  CAS  PubMed  Google Scholar 

  26. J. G. Wagner. Properties of the Michaelis-Menten equation and its integrated form which are useful in pharmacokinetics.J. Pharmacokin. Biopharm. 1:103–121 (1972).

    Article  Google Scholar 

  27. W. D. Mason, J. D. Conklin, and F. J. Hailey. Relative bioavailability of four macrocrystalline nitrofurantoin capsules.Int. J. Pharm. 36:105–111 (1987).

    Article  CAS  Google Scholar 

  28. W. A. Mahon, J. S. Leeder, M. M. Brill-Edwards, J. Correia, and S. M. McLeod. Comparative bioavailability study of three sustained release quinidine formulations.Clin. Pharmacokin. 13:118–124 (1987).

    Article  CAS  Google Scholar 

  29. J. Sjövall, G. A. Alvan, and D. Westerlund. Dose-dependent absorption of amoxycillin and bacampicillin.Clin. Pharmacol. Ther. 38:241–250 (1985).

    Article  PubMed  Google Scholar 

  30. M. Mayersohn. Ascorbic acid absorption in man—Pharmacokinetic implications.Eur. J. Pharmacol. 19:140–142 (1972).

    Article  CAS  PubMed  Google Scholar 

  31. J. H. Wood and K. M. Thakker. Michaelis-Menten absorption kinetics in drugs: examples and implications.Eur. J. Clin. Pharmacol. 23:183–188 (1982).

    Article  CAS  PubMed  Google Scholar 

  32. G. Levy and W. J. Jusko. Factors affecting the absorption of riboflavine in man.J. Pharm. Sci. 55:285–289 (1966).

    Article  CAS  PubMed  Google Scholar 

  33. A. Tsuji, E. Nakashima, I. Kagami, and T. Yamana. Intestinal absorption mechanism of amphotericβ-lactam antibiotics I: comparative absorption absorption and evidence for saturable transport of amino-β-lactam antibiotics byin situ rat small intestine.J. Pharm. Sci. 70:768–772 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. P. J. Sinko and G. L. Amidon. Characterization of the oral absorption of β-lactam antibiotics. I. Determination of intrinsic membrane absorption parameters in the rat intestinein situ.Pharm. Res. 5:645–650 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reigner, B.G., Couet, W., Guedes, JP. et al. Saturable rate of cefatrizine absorption after oral administration to humans. Journal of Pharmacokinetics and Biopharmaceutics 18, 17–34 (1990). https://doi.org/10.1007/BF01063620

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01063620

Key words

Navigation