Skip to main content
Log in

Gravitational Effects on Nonlinear Heat Transport Near the Superfluid Transition in 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have recently observed nonlinear heat transport within 30 nK of the superfluid transition temperature using heat flux, Q, in the range 0.1 < Q < 2 erg/(s cm 2 ). While Haussmann and Dohm (HD) accurately predict the initial departure of the thermal conductivity, κ, from the linear response region, κ is greater than expected very close to T λ . We anticipate that the nature of the thermal conductivity's nonlinearity may depend upon Earth's gravity in the low heat flux limit (Q < 0.5 erg/(s cm 2 )). Comparison of our data to similar data to be taken in a microgravity laboratory will provide an experimental determination of the effect of gravity on nonlinear heat transport near the superfluid transition. The microgravity measurements will also permit the first experimental test of theories that do not consider gravitational effects, such as those by HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Haussmann and V. Dohm, Phys. Rev. Lett. 67, 3404 (1991); Z. Phys. B 87, 229 (1992).

    Google Scholar 

  2. A. Onuki, J. Low Temp. Phys. 50, 433 (1983); 55, 309 (1984); 104, 133 (1996).

    Google Scholar 

  3. P. Weichman, A. Prasad, R. Mukhopadhyay, and J. Miller, Phys. Rev. Lett. 80, 22 (1998); P. Weichman and J. Miller, preprint.

    Google Scholar 

  4. R. Haussmann, preprint.

  5. P. Day, W. Moeur, S. McCready, D. Sergatskov, F-C. Liu, and R. Duncan, submitted to Phys. Rev. Lett.

  6. G. Ahlers, Phys. Rev. Lett. 21, 1159 (1968), J. Kerrisk and W. Keller, Phys. Rev. 177, 341 (1969); W. Tam and G Ahlers, Phys. Rev. B 32, 5932 (1985); 33, 183 (1986); M. Dingus, F. Zhong, and H. Meyer, J. Low Temp. Phys. 65, 185 (1986).

    Google Scholar 

  7. R. A. Ferrell, N. Menyhard, H. Schmidt, F. Schwabl, and P. Szepfalusy, Phys. Rev. Lett. 18, 891 (1967); V. Dohm, Phys. Rev. B 44, 2697 (1991); V. Dohm and R. Folk, Phys. Rev. Lett. 46, 349 (1981).

    Google Scholar 

  8. R. Haussmann and V. Dohm, Phys. Rev. B 46, 6361 (1992).

    Google Scholar 

  9. R. Haussmann, private communication.

  10. G. Ahlers, Phys. Rev. 171, 275 (1968).

    Google Scholar 

  11. F-C. Liu and G. Ahlers, Phys. Rev. Lett. 76, 1300 (1996).

    Google Scholar 

  12. D. Murphy and H. Meyer, Phys. Rev. B. 57, 536 (1998).

    Google Scholar 

  13. W. Moeur, P. Day, F-C. Liu, S. Boyd, M. Adriaans, and R. Duncan, Phys. Rev. Lett. 78, 2421 (1997).

    Google Scholar 

  14. R. Duncan, G. Ahlers, and V. Steinberg, Phys. Rev. Lett. 60, 1522 (1988).

    Google Scholar 

  15. J. Lipa, Seventy-Fifth Jubilee Conference on Helium-4, ed. J. Armitage (World Scientific, Singapore, 1983).

    Google Scholar 

  16. G. Ahlers and F-C. Liu, J. Low Temp. Phys. 105, 255 (1996).

    Google Scholar 

  17. B. Halperin, P. Hohenberg, and E. Siggia, Phys. Rev. Lett. 32, 1289 (1974); Phys. Rev. B 13, 1299 (1976).

    Google Scholar 

  18. Critical Dynamics in Microgravity, which is part of the ‘M1’ Mission Set, is in definition for flight on the International Space Station in the year 2003.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan, R.V., Day, P.K., McCready, S.S. et al. Gravitational Effects on Nonlinear Heat Transport Near the Superfluid Transition in 4He. Journal of Low Temperature Physics 113, 861–866 (1998). https://doi.org/10.1023/A:1022550821984

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022550821984

Keywords

Navigation