Skip to main content
Log in

Regeneration and biosynthesis of dytiscid defensive agents (Coleoptera: Dytiscidae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The defensive secretions of the dytiscid species,Agabus seriatus (Say) andAgabus obtusatus (Say), were qualitatively and quantitatively analyzed by high-pressure liquid chromatography. The intrinsic ability ofA. Seriatus andA. Obtusatus to regenerate their prothoracic gland defensive secretions under laboratory conditions was determined by analyzing the secretions every seventh day for five weeks. Both beetles regenerated ∼ 80% of their prothoracic gland components within two weeks.A. seriatus was injected with [4-14C]cholesterol and after a three-week regeneration period 7.5% of the14Clabel was found in the steroidal defensive secretion from the prothoracic glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum, M.S. 1978. Biochemical defenses of insects, pp. 465–513,in M. Rockstein (ed.).Biochemistry of insects. Academic Press, New York.

    Google Scholar 

  • Blunck, H. 1971. Die Schrechdrusen des Dytiscus und ihr Secret.Z. Wiss. Zool. 117:205–256.

    Google Scholar 

  • Chapman, J.C., Lockely, W.J.S., Rees, H.H., andGoodwin, T.W. 1977. Stereochemistry of olefinic bond formation in defensive steroids ofAcilius sulcatus (Dytiscidae).Eur. J. Biochem. 81:293–298.

    Google Scholar 

  • Clayton, R.B. 1964. The utilization of sterols by insects.J. Lipid Res. 5:3–19.

    Google Scholar 

  • Dettner, K. 1979. Chemotaxonomy of water beetles based on their pygidial gland constituents.Biochem. Syst. Ecol. 7:129–140.

    Google Scholar 

  • Dettner, K., andAschwinger, G. 1980. Defensive substances from pygidial glands of water beetles.Biochem. Syst. Ecol. 8:89–95.

    Google Scholar 

  • Dorfman, R.I., andSharma, D.C. 1965. An outline of the biosynthesis of corticosteroids and androgens.Steroids 6:229–235.

    PubMed  Google Scholar 

  • Downer, R.G.H. 1978. Functional role of lipids in insects, pp. 57–92,in M. Rockstein (ed.).Biochemistry of insects. Academic Press, New York.

    Google Scholar 

  • Duffey, S.S. 1977. Arthropod allomones: Chemical effronteries and antagonists. Proc. XV Int. Congr. Entomol., Washington, D.C.Entomol. Soc. Am. College Park, Maryland, pp. 323–394.

    Google Scholar 

  • Eisner, H.E., Alsop, D.W., andEisner, T. 1967. Defense mechanism of arthropods. XX. Quantitative assessment of hydrogen cyanide production in two species of millipedes.Psyche 74:107–117.

    Google Scholar 

  • Folch, J., Lees, M., andSlone Stanley, G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues.J. Biol. Chem. 226:497–509.

    PubMed  Google Scholar 

  • Johnson, G.H., andJakinovich, W., Jr. 1970. Feeding behaviour of the predaceous diving beetleCybister fimbriolatus fimbriolalus (Say).Bioscience 20:111.

    Google Scholar 

  • Lehninger, A.L. 1975. The bisynthesis of lipids; pp. 659–691,in Biochemistry. Worth Publishers, New York.

    Google Scholar 

  • Miller, J.R., andMumma, R.O. 1973. Defensive agents of the American water beetlesAgabus seriatus andGraphoderus liberus.J. Insect Physiol. 19:917–925.

    Google Scholar 

  • Miller, J.R., andMumma, R.O. 1974. Seasonal quantification of the defensive steroid titer ofAgabus seriatus (Coleoptera: Dytiscidae).Ann. Entomol. Soc. Am. 67:850–852.

    Google Scholar 

  • Miller, J.R., andMumma, R.O. 1976. Physiological activity of water beetles defensive agents. I. Toxicity and anesthetic activity of steroids and norsequiterpenes administered in solution to the minnowPimephales promelas Raf.J. Chem. Ecol. 2:115–130.

    Google Scholar 

  • Newhart, A.T., andMumma, R.O. 1979. Defensive secretions of three species ofAcilius (Coleoptcra: Dytiscidae) and their seasonal variations as determined by high-pressure liquid chromatography.J. Chem. Ecol. 5:643–652.

    Google Scholar 

  • Sandor, T., andMehdi, A.Z. 1979. Steroids and evolution, pp. 1–72,in E.J.W. Barrington (ed.).Hormones and Evolution. Vol. 1. Academic Press, New York.

    Google Scholar 

  • Schildknecht, H. 1970. The defensive chemistry of land and water beetles.Angew. Chem. Int. Ed. Eng. 9:1–19.

    Google Scholar 

  • Schildknecht, H. 1971. Evolutionary peaks in the defensive chemistry of insects.Endeavour 30:136–141.

    PubMed  Google Scholar 

  • Schildknecht, H. 1976. Protective substances of arthropods and plants.Pontif. Acad. Sci. Scr. Varia 4:1–107.

    Google Scholar 

  • Svoboda, J.A., Kaplanis, J.N., Robbins, W.E., andThompson, M.J. 1975. Recent developments in insect steroid metabolism.Annu. Rev. Entomol. 20:205–220.

    PubMed  Google Scholar 

  • Thompson, M.J., Kaplanis, J.N., Robbins, W.E., andSvoboda, J.A. 1973. Metabolism of steroids in insects.Adv. Lipid Res. 11:219–265.

    PubMed  Google Scholar 

  • Tschinnkel, W.R. 1975. A comparative study of the chemical defensive system of Tenebrionid beetles: Chemistry of the secretions.J. Insect Physiol. 21:753–783.

    Google Scholar 

  • Wheeler, J.W., Chung, R.H., Oh, S.K., Benfield, E.F., andNeff, S.E. 1970. Defensive secretions of cychrine beetles (Coleoptera: Carabidae).Ann. Entomol. Soc. Am. 63:469–471.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fescemyer, H.W., Mumma, R.O. Regeneration and biosynthesis of dytiscid defensive agents (Coleoptera: Dytiscidae). J Chem Ecol 9, 1449–1464 (1983). https://doi.org/10.1007/BF00988511

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988511

Key words

Navigation