Skip to main content
Log in

Thermal conductivity of gaseous fluorocarbon refrigerants R 12, R 13, R 22, and R 23, under pressure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity of four gaseous fluorocarbon refrigerants has been measured by a vertical coaxial cylinder apparatus on a relative basis. The fluorocarbon refrigerants used and the ranges of temperature and pressure covered are as follows: R 12 (Dichlorodifluoromethane CCl2F2): 298.15–393.15 K, 0.1–4.28 MPa R 13 (Chlorotrifluoromethane CClF3): 283.15–373.15 K, 0.1–6.96 MPa R 22 (Chlorodifluoromethane CHClF2): 298.15–393.15 K, 0.1–5.76 MPa R 23 (Trifluoromethane CHF3): 283.15–373.15 K, 0.1–6.96 MPa

The apparatus was calibrated using Ar, N2, and CO2 as the standard gases. The uncertainty of the experimental data is estimated to be within 2%, except in the critical region. The behavior of the thermal conductivity for these fluorocarbons is quite similar; thermal conductivity increases with increasing pressure. The temperature coefficient of thermal conductivity at constant pressure, (λ/∂T) p , is positive at low pressures and becomes negative at high pressures. Therefore, the thermal conductivity isotherms of each refrigerant intersect each other in a specific range of pressure. A steep enhancement of thermal conductivity is observed near the critical point. The experimental results are statistically analyzed and the thermal conductivities are expressed as functions of temperature and pressure and of temperature and density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tanaka, M. Noguchi, H. Kubota, and T. Makita, J. Chem. Eng. Japan 12:171 (1979).

    Google Scholar 

  2. H. J. M. Hanley, R. D. McCarty, and W. H. Haynes, J. Phys. Chem. Ref. Data 3:979, (1974).

    Google Scholar 

  3. J. V. Sengers, W. T. Bolk, and C. J. Stigter, Physica 30:1018 (1964).

    Google Scholar 

  4. H. Kraussold, Forsch. Geb. Ing. Wes. 5:186 (1934).

    Google Scholar 

  5. T. E. Morsey, J. Chem. Eng. Data 15:256 (1970).

    Google Scholar 

  6. Japanese Association of Refrigeration, Thermophysical Properties of Refrigerants (R22, Chlorodifluoromethane) (Ninon Reito Kyokai, Tokyo, Japan, 1975).

    Google Scholar 

  7. H, Iwasaki et al., private communications.

  8. L. F. Carmichael, H. H. Reamer, and B. H. Sage, J. Chem. Eng. Data 11:52 (1966).

    Google Scholar 

  9. B. Le Neindre, R. Tufeu, P. Bury, P. Johanin, and B. Vodar, in Proceedings of the Eighth International Conference on Thermal Conductivity (Plenum Press, New York, 1969), p. 229.

    Google Scholar 

  10. D. Misic and G. Thodos, Physica 32:885 (1966).

    Google Scholar 

  11. B. M. Rosenbaum and G. Thodos, Physica 37:442 (1967).

    Google Scholar 

  12. Promotion Bureau, Science and Technology Agency (Japan), Report of the Physical and Chemical Property Data, High Press. Data 4 (1976); 5 (1977).

  13. Y. S. Touloukian, P. E. Liley, and S. C. Saxena, Thermophysical Properties of Matter (TPRC Data Series) Vol. 3. Thermal Conductivity-Nonmetallic Liquids and Gases (IFI/Plenum Data Corp., New York, 1970).

    Google Scholar 

  14. J. M. B. Rienda, Ph.D. thesis, Madrid University, Madrid, Spain (1963).

    Google Scholar 

  15. S. W. Akin, Trans. ASME 72:751 (1950).

    Google Scholar 

  16. A. K. Abas-Zade, Doklady Akad. Nauk 99:227 (1954).

    Google Scholar 

  17. L. A. Bromley, USAEC Rept. UCRL-1852 (1952), p. 1.

  18. F. G. Keyes, Trans. ASME 76:809 (1954).

    Google Scholar 

  19. L. Cherneyeva, Kholodil'naya Tekh. 29:55 (1952); 30:60 (1953).

    Google Scholar 

  20. W. H. Markwood, Jr., and A. F. Benning, Refrig. Eng. 45:95 (1943).

    Google Scholar 

  21. A. Nagashima, Refrigeration 52:42 (1977).

    Google Scholar 

  22. J. E. S. Venart, N. Mani, and R. V. Paul, in Proceedings of the Fourteenth International Conference on Thermal Conductivity (Plenum Press, New York, 1976), p. 287.

    Google Scholar 

  23. N. R. Draper and H. Smith, Applied Regression Analysis (John Wiley & Sons, New York, 1966).

    Google Scholar 

  24. A. Ralston and H. S. Wilf, Mathematical Methods for Digital Computers (John Wiley & Sons, New York, 1952).

    Google Scholar 

  25. H. J. M. Hanley, R. D. McCarty, and W. M. Haynes, Cryogenics 15:413 (1975).

    Google Scholar 

  26. B. W. Gamson, Chem. Eng. Prog. 45:154 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makita, T., Tanaka, Y., Morimoto, Y. et al. Thermal conductivity of gaseous fluorocarbon refrigerants R 12, R 13, R 22, and R 23, under pressure. Int J Thermophys 2, 249–268 (1981). https://doi.org/10.1007/BF00504188

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00504188

Key words

Navigation