Skip to main content
Log in

Geodesic Connectedness in Generalized Reissner-Nordström Type Lorentz Manifolds

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A detailed study of the existence, causal character and multiplicity of geodesics joining two points is carried out for a wide family of non-static Lorentz manifolds (including intermediate Reissner-Nordström, inner Schwarzschild and Generalized Robertson-Walker spacetimes). Results relating causality and connectedness by timelike or lightlike geodesics are obtained, in the spirit of the well-known Avez-Seifert result. The existence of closed spacelike geodesics is also characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alías, L. J., Romero, A., Sánchez, M. (1995). Gen. Rel. Grav. 27, 71.

    Google Scholar 

  2. Avez, A. (1963). Ann. Inst. Fourier 132, 105.

    Google Scholar 

  3. Beem, J. K., Ehrlich, P. E., Easley, K. L. (1996). Global Lorentzian Geometry (2nd. ed., Pure and Applied Mathematics vol 202, Marcel Dekker, New York).

    Google Scholar 

  4. Beem, J. K., Parker, P. E. (1989). Ann. Mat. Pure Appl. 155, 137.

    Google Scholar 

  5. Benci, V., Fortunato, D. (1990). Ann. Inst. Henri Poincaré — Analyse non linaire 7, 27.

    Google Scholar 

  6. Benci, V., Fortunato, D. (1995). In Proc. Conf. on Variational Methods and Nonlinear Analysis, A. Ambrosetti, K. C. Chang, eds. (Gordon & Breach, New York), p. 1.

    Google Scholar 

  7. Benci, V., Fortunato, D., Giannoni, F. (1991). Ann. Inst. Henri Poincaré — Analyse non linaire 8, 79.

    Google Scholar 

  8. Benci, V., Fortunato, D., Giannoni, F. (1992). Ann. Scuola Norm. Sup. Pisa, Ser. IV, XIX, 255.

    Google Scholar 

  9. Benci, V., Fortunato, D., Masiello, A. (1994). Math. Z. 217, 73.

    Google Scholar 

  10. Deszcz, R., Verstraelen, L., Vrancken, L. (1991). Gen. Rel. Grav. 23, 671.

    Google Scholar 

  11. Galloway, G. J. (1984). Trans. Amer. Math. Soc. 285, 379.

    Google Scholar 

  12. Galloway, G. J. (1986). Proc. Amer. Math. Soc. 98, 119.

    Google Scholar 

  13. Giannoni, F. (1991). Math. Ann. 291, 383.

    Google Scholar 

  14. Giannoni, F., Massiello, A. (1993). Manuscripta Math. 78, 381.

    Google Scholar 

  15. Haddow, B. M., Carot, J. (1996). Class. Quantum Grav. 13, 289.

    Google Scholar 

  16. Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge).

    Google Scholar 

  17. Masiello, A. (1993). J. Diff. Equations 104, 48.

    Google Scholar 

  18. O'Neill, B. (1983). Semi-Riemannian Geometry with Applications to Relativity (Pure and Applied Ser. vol 103, Academic Press, New York).

    Google Scholar 

  19. Penrose, R. (1972). Techniques of Differential Topology in Relativity (Conference board of Math. Sc. Vol. 7, S.I.A.M.).

  20. Perlick, V. (1995). J. Math. Phys. 36, 6915.

    Google Scholar 

  21. Romero, A., Sánchez, M. (1994). Geometriae Dedicata 53, 103.

    Google Scholar 

  22. Sánchez, M. (1997). “Structure of Lorentzian tori with a Killing vector field,” to appear in Trans. Amer. Math. Soc.

  23. Schmidt, H.-J. (1996). Gen. Rel. Grav. 28, 899.

    Google Scholar 

  24. Seifert, H. J. (1967). Z. f. Naturforsch. 22a, 1356.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, M. Geodesic Connectedness in Generalized Reissner-Nordström Type Lorentz Manifolds. General Relativity and Gravitation 29, 1023–1037 (1997). https://doi.org/10.1023/A:1018824709846

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018824709846

Navigation