Skip to main content
Log in

Excitatory amino acids: The involvement of second messengers in the signal transduction process

  • Review
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Excitatory amino acids (EAA) can activate second messenger systems in addition to a direct gating of ion channels. A discrete coupling between novel EAA receptor subtypes and second messenger systems has been previously proposed.

  2. 2.

    EAAs have been suggested to activate both adenylate and guanylate cyclases and also to induce phosphoinositide (PI) turnover. The increased PI turnover was observed in both central neurons and glia, and a “quisqualate-type” receptor has been most frequently involved, which may differ from the quisqualate receptor previously defined by electrophysiological studies.

  3. 3.

    The roles of EAA-induced calcium influx into neurons and raised intracellular calcium levels are discussed regarding the activation of phosphoinositide turnover.

  4. 4.

    This review examines the data supporting a link between EAA receptors and second messengers and considers whether there is any need for adopting new EAA receptor subtypes. Also, the use of theXenopus laevis oocyte for expressing EAA receptors and studying any putative links to second messenger systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baudry, M., Evans, J., and Lynch, G. (1986). Excitatory amino acids inhibit stimulation of phosphatidylinositol metabolism by aminergic agonists in hippocampus.Nature 319329–331.

    Google Scholar 

  • Berridge, M. J. (1987). Inositol trisphosphate and diacylglycerol: Two interacting second messengers.Annu. Rev. Biochem. 56159–193.

    Google Scholar 

  • Choi, D. W. (1987). Ionic dependence of glutamate neurotoxicity.J. Neurosci. 7369–379.

    Google Scholar 

  • Collingridge, G. L., and Bliss, T. V. P. (1987). NMDA receptors, their role in long term potentiation.Trends Neurosci. 10288–293.

    Google Scholar 

  • Cotman, C. W., Flatman, J. A., Ganong, A. H., and Perkins, M. N. (1986). Effects of excitatory amino acid antagonists on evoked and spontaneous excitatory potentials in guinea-pig hippocampus.J. Physiol. 378403–415.

    Google Scholar 

  • Cull-Candy, S. G., and Usowicz, M. M. (1987). Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons.Nature 325525–528.

    Google Scholar 

  • Dascal, N. (1987). The use of Xenopus oocytes for the study of ion channels.CRC Crit. Rev. Biochem. 22317–387.

    Google Scholar 

  • Dascal, N., Ifune, C., Hopkins, R., Snutch, T. P., Lubbert, H., Davidson, N., Simon, M. I., and Lester, H. A. (1986). Involvement of a GTP-binding protein in mediation of serotonin and acetylcholine responses in Xenopus oocytes injected with rat brain messenger RNA.Mol. Brain Res. 1201–209.

    Google Scholar 

  • Downes, C. P., and Michell, R. H. (1985). Inositol phospholipid breakdown as a receptor-controlled generator of second messengers. InMolecular Mechanisms of Transmembrane Signalling (P. Cohen and M. Houslay, Eds.), Elsevier, Amsterdam, pp. 3–56.

    Google Scholar 

  • Ferrendelli, J. A., Chang, M. M., and Kinscherf, D. A. (1974). Elevation of cGMP levels in central nervous system by excitatory and inhibitory amino acids.J. Neurochem. 22535–540.

    Google Scholar 

  • Foster, A. C., and Fagg, G. E. (1988). Acidic amino acid receptor nomenclature: time for change.Trends Neurosci. 1117–18.

    Google Scholar 

  • Garthwaite, J. (1982). Excitatory amino acid receptors and guanosine 3′,5′-cyclic monophosphate in incubated slices of immature and adult rat cerebellum.Neuroscience 72491–2497.

    Google Scholar 

  • Garthwaite, G., and Garthwaite, J. (1987). Receptor-linked ionic channels mediate N-methyl-D-aspartate neurotoxicity in rat cerebellar slices.Neurosci. Lett. 83241–246.

    Google Scholar 

  • Gilman, A. G. (1987). G proteins: Transducers of receptor-generated signals.Annu. Rev. Biochem. 56615–649.

    Google Scholar 

  • Gonzales, R. A., Greger, P. H., Jr., Baker, S. P., Ganz, N. I., Bolden, C., Raizada, M. K., and Crews, F. T. (1987). Phorbol esters inhibit agonist-stimulated phosphoinositide hydrolysis in neuronal primary cultures.Dev. Brain Res. 3759–66.

    Google Scholar 

  • Gundersen, C. B., Miledi, R., and Parker, I. (1984). Glutamate and kainate receptors induced by rat brain messenger RNA in Xenopus oocytes.Proc. Roy. Soc. Lond. B 221127–143.

    Google Scholar 

  • Hirono, C., Ito, I., and Sugiyama, H. (1987). Neurotensin and acetylcholine evoke common responses in frog oocytes injected with rat brain messenger ribonucleic acid.J. Physiol. 382523–535.

    Google Scholar 

  • Houamed, K. M., Bilbe, G., Smart, T. G., Constanti, A., Brown, D. A., Barnard, E. A., and Richards, B. M. (1984). Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA.Nature 310318–321.

    Google Scholar 

  • Jahr, C. E., and Stevens, C. F. (1987). Glutamate activates multiple single channel conductances in hippocampal neurons.Nature 325522–525.

    Google Scholar 

  • Johnson, J. W., and Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons.Nature 325529–531.

    Google Scholar 

  • Kater, S. B., Mattson, M. P., Cohan, C., and Connor, J. (1988). Calcium regulation of the neuronal growth cone.Trends Neurosci. 11315–321.

    Google Scholar 

  • Kemp, J. A., Foster, A. C., and Wong, E. H. F. (1987). Non-competitive antagonists of excitatory amino acid receptors.Trends Neurosci. 10294–298.

    Google Scholar 

  • Kendall, D. A., and Nahorski, S. R. (1985). Dihydropyridine calcium channel activators and antagonists influence depolarization-evoked inositol phospholipid hydrolysis in brain.Eur. J. Pharmacol. 11531–36.

    Google Scholar 

  • Krogsgaard-Larsen, P., Honore, T., Hansen, J. J., Curtis, D. R., and Lodge, D. (1980). New class of glutamate agonist structurally related to ibotenic acid.Nature 28464–66.

    Google Scholar 

  • Kudo, Y., and Ogura, A. (1986). Glutamate-induced increase in intracellular Ca2+ concentration in isolated hippocampal neurones.Br. J. Pharmacol. 89191–198.

    Google Scholar 

  • Kushner, L., Lerma, J., Zukin, R. S., and Bennett, M. V. L. (1988). Coexpression of N-methyl-D-aspartate and phencyclidine receptors in Xenopus oocytes injected with rat brain mRNA.Proc. Natl. Acad. Sci. USA 853250–3254.

    Google Scholar 

  • Mattson, M. P. (1988). Neurotransmitters in the regulation of neuronal cytoarchitecture.Brain Res. Rev. 13179–212.

    Google Scholar 

  • Mayer, M. L., and Westbrook, G. L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system.Prog. Neurobiol. 28197–276.

    Google Scholar 

  • Mayer, M. L., Westbrook, G. L., and Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones.Nature 309261–263.

    Google Scholar 

  • McCaslin, P. P., and Morgan, W. W. (1987). Cultured cerebellar cells as an in vitro model of excitatory amino acid receptor function.Brain Res. 417380–384.

    Google Scholar 

  • McDonough, P. M., Goldstein, D., and Brown, J. H. (1988). Elevation of cytoplasmic calcium concentration stimulates hydrolysis of phosphatidylinositol bisphosphate in chick heart cells: Effect of sodium channel activators.Mol. Pharmacol. 33310–315.

    Google Scholar 

  • McLennan, H. (1983). Receptors for excitatory amino acids in the mammalian central nervous system.Prog. Neurobiol. 20251–271.

    Google Scholar 

  • Murphy, S. N., Thayer, S. A., and Miller, R. J. (1987). The effects of excitatory amino acids on intracellular calcium in single mouse striatal neuronsin vitro.J. Neurosci. 74145–4158.

    Google Scholar 

  • Nahorski, S. R., Kendall, D. A., and Batty, I. (1986). Receptors and phosphoinositide metabolism in the central nervous system.Biochem. Pharmacol. 352447–2453.

    Google Scholar 

  • Nicoletti, F., Meek, J. L., Iadorola, M. J., Chuang, D. M., Roth, B. L., and Costa, E. (1986a). Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus.J. Neurochem. 4640–46.

    Google Scholar 

  • Nicoletti, F., Wroblewski, J. T., Novelli, A., Alho, H., Guidotti, A., and Costa, E. (1986b). The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells.J. Neurosci. 61905–1911.

    Google Scholar 

  • Nicoletti, F., Iadarola, M. J., Wroblewski, J. T., and Costa, E. (1986c). Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and interaction withα 1-adrenoceptors.Proc. Natl. Acad. Sci. USA 831931–1935.

    Google Scholar 

  • Nicoletti, F., Wroblewski, J. T., and Costa, E. (1987). Magnesium ions inhibit the stimulation of inositol phospholipid hydrolysis by endogenous excitatory amino acids in primary cultures of cerebellar granule cells.J. Neurochem. 48967–973.

    Google Scholar 

  • Nishizuka, Y. (1984). The role of protein kinase C in cell surface signal transduction and tumor promotion.Nature 308693–698.

    Google Scholar 

  • Nomura, Y., Kaneko, S., Kato, K., Yamagishi, S., and Sugiyama, H. (1987). Inositol phosphate formation and chloride current responses induced by acetylcholine and serotonin through GTP-binding proteins in Xenopus oocytes after injection of rat brain messenger RNA.Mol. Brain Res. 2113–123.

    Google Scholar 

  • Novelli, A., Nicoletti, F., Wroblewski, J. T., Alho, H., Costa, E., and Guidotti, A. (1987). Excitatory amino acid receptors coupled with guanylate cyclase in primary cultures of cerebellar granule cells.J. Neurosci. 740–47.

    Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones.Nature 307462–465.

    Google Scholar 

  • Oron, Y., Dascal, N., Nadler, E., and Lupu, M. (1985). Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes.Nature 313141–143.

    Google Scholar 

  • Pearce, B., Albrecht, J., Morrow, C., and Murphy, S. (1986). Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux.Neurosci. Lett. 72335–340.

    Google Scholar 

  • Pearce, I. A., Cambray-Deakin, M. A., and Burgoyne, R. D. (1987). Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells.FEBS Lett. 223143–147.

    Google Scholar 

  • Recasens, M., Sassetti, I., Nourigat, A., Sladeczek, F., and Bockaert, J. (1987). Characterization of subtypes of excitatory amino acid receptors involved in the stimulation of inositol phosphate synthesis in rat brain synaptoneurosomes.Eur. J. Pharmacol. 14187–93.

    Google Scholar 

  • Rothman, S. M., and Olney, J. W. (1987). Excitotoxicity and the NMDA receptor.Trends Neurosci. 10299–302.

    Google Scholar 

  • Saito, M., Kawai, N., Miwa, A., Pan-Hou, H., and Yoshioka, M. (1985). Spider toxin (JSTX) blocks glutamate synapse in hippocampal pyramidal neurons.Brain Res. 346397–399.

    Google Scholar 

  • Schmidt, B. H., Weiss, S., Sebben, M., Kemp, D. E., Bockaert, J., and Sladeczek, F. (1987). Dual action of excitatory amino acids on the metabolism of inositol phosphates in striatal neurons.Mol. Pharmacol. 32364–368.

    Google Scholar 

  • Schoepp, D. D., and Johnson, B. G. (1988). Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acid-sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus.J. Neurochem. 501605–1613.

    Google Scholar 

  • Sigel, E., and Baur, R. (1988). Activation of protein kinase C differentially modulates neuronal Na+, Ca2+, andγ-aminobutyrate type A channels.Proc. Natl. Acad. Sci. USA 856192–6196.

    Google Scholar 

  • Sladeczek, F., Pin, J.-P., Recasens, M., Bockaert, J., and Weiss, S. (1985). Glutamate stimulates inositol phosphate formation in striatal neurones.Nature 317717–179.

    Google Scholar 

  • Smart, T. G., Constanti, A., Houamed, K., Bilbe, G., Brown, D. A., Barnard, E. A., and Van Renterghem, C. (1986). Expression of vertebrate amino acid receptors inXenopus oocytes.In Excitatory Amino Acids and Epilepsy (R. Schwarcz and Y. Ben-Ari, Eds.), Plenum Press, New York, pp. 525–537.

    Google Scholar 

  • Smart, T. G., Houamed, K. M., Van Renterghem, C., and Constanti, A. (1987). mRNA-directed synthesis and insertion of functional amino acid receptors inXenopus laevis oocytes.Biochem. Soc. Trans. 15117–122.

    Google Scholar 

  • Snutch, T. P. (1988). The use of Xenopus oocytes to probe synaptic communication.Trends Neurosci. 11250–256.

    Google Scholar 

  • Strange, P. G. (1988). The structure and mechanism of neurotransmitter receptors. Implications for the structure and function of the central nervous system.Biochem. J. 249309–318.

    Google Scholar 

  • Sugiyama, H., Ito, I., and Hirono, C. (1987). A new type of glutamate receptor linked to inositol phospholipid metabolism.Nature 325531–533.

    Google Scholar 

  • Troyer, E. W., Hall, I. A., and Ferrendelli, J. A. (1978). Guanylate cyclases in CNS: Enzymatic characteristics of soluble and particulate enzymes from mouse cerebellum and retina.J. Neurochem. 31825–833.

    Google Scholar 

  • Vaccarino, F., Guidotti, A., and Costa, E. (1987). Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons.Proc. Natl. Acad. Sci. USA 848707–8711.

    Google Scholar 

  • Verdoorn, T. A., Kleckner, N. W., and Dingledine, R. (1987). Rat brain N-methyl-D-aspartate receptors expressed in Xenopus oocytes.Science 2381114–1116.

    Google Scholar 

  • Watkins, J. C., and Evans, R. H. (1981). Excitatory amino acid transmitters.Annu. Rev. Pharmacol. Toxicol. 21165–204.

    Google Scholar 

  • Watkins, J. C., and Olverman, H. J. (1987). Agonists and antagonists for excitatory amino acid receptors.Trends Neurosci. 10265–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smart, T.G. Excitatory amino acids: The involvement of second messengers in the signal transduction process. Cell Mol Neurobiol 9, 193–206 (1989). https://doi.org/10.1007/BF00713028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713028

Key words

Navigation