Skip to main content
Log in

Catalysis by porous heteropoly compounds

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

This paper attempts to review recent works on catalysis of porous heteropoly compounds. The salts of heteropolyacids having Keggin structure with large cations like Cs+ are porous materials. For Cs hydrogen salts, the pore width can be controlled by the Cs content. Cs2.5H0.5PW12O40 has the largest amount of protons on the surface among the acidic Cs salts and possesses pores with bimodal distribution in the micro and meso region. Efficient performances were demonstrated for acid-catalyzed reactions such as skeletal isomerization of η-butane in solid-gas system, alkylation and acylation in solid-liquid system, and hydrolysis and hydration in solid-water system. A microporous salt, Cs2.2H0.8PW12O40, exhibited reactant shape selectivity towards direct decomposition of esters. Furthermore, an ultramicroporous bifunctional catalyst, Pt–Cs2.1H0.9PW12O40 of which the pore width is around 5 Å, exhibits reactant shape selectivity for hydrogenation of alkenes and oxidation of hydrocarbons, and product shape selectivity for skeletal isomerization of η-butane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Misono, Catal. Rev.-Sci. Eng. 29 (1987) 269; 30 (1988) 339.

    Google Scholar 

  2. T. Okuhara, N. Mizuno and M. Misono, Advan. Catal. 41 (1995) 113.

    Google Scholar 

  3. M. Misono, Proc. 10th Intern. Congr. Catal., eds. L. Guczi, F. Solymosi and P. Tétényi (Elsevier, Amsterdam / Akademiai Kiado, Budapest, 1993) p. 60.

    Google Scholar 

  4. Y. Izumi, K. Urabe and M. Onaka, Zeolite, Clay, and Heteropoly Acid in Organic Reactions(Kodansha, Tokyo and VCH, Weinheim, New York, 1992).

    Google Scholar 

  5. I.V. Kozhevnikov, Russ. Chem. Rev. 62 (1993) 473; Catal. Rev. Sci. Eng. 37 (1995) 311.

    Article  Google Scholar 

  6. Y. Ono, Perspectives in Catalysis, eds. J.M. Thomas and K.I. Zamaraev (Blackwell, London, 1992) p. 431.

    Google Scholar 

  7. M. Misono and T. Okuhara, Chemtech 23 (1993) 23.

    Google Scholar 

  8. A. Corma, Chem. Rev. 95 (1995) 559.

    Google Scholar 

  9. M. Misono and N. Nojiri, Appl. Catal. 64 (1990) 1.

    Article  Google Scholar 

  10. T. Okuhara, T. Nishimura and M. Misono, Proc. 11th Intern. Congr. Catal., Budapest, 1996, eds. J.W. Hightower, W.N. Delgass, E. Iglesia and A.T. Bell (Elsevier, Amsterdam, 1996) p. 581.

    Google Scholar 

  11. T. Okuhara, T. Nishimura and M. Misono, Chem. Lett. (1995) 155.

  12. Y. Yoshinaga, K. Seki, T. Nakato and T. Okuhara, Angew. Chem. Int. Ed. Engl. 36 (1997) 2833.

    Article  Google Scholar 

  13. S.M. Csiccery, Pure Appl. Chem. 58 (1986) 841; Zeolites 4 (1984) 202.

    Google Scholar 

  14. D.W. Breck, Zeolite Molecular Sieves(Wiley, New York, 1974) p. 633.

    Google Scholar 

  15. W. Hölderich, M. Hasse and F. Näumann, Angew. Chem. Int. Ed. Engl. 27 (1988) 226.

    Article  Google Scholar 

  16. T.J. Pinnavaia, R.J. Raythatha, J.G. Lee, L.T. Holloran and T.F. Hottman, J. Am. Chem. Soc. 101 (1979) 689.

    Google Scholar 

  17. T. Kwan and T.J. Pinnavaia, Chem. Mater. 1 (1989) 381.

    Google Scholar 

  18. W.F. Maier, J.A. Martens, S. Klein, J. Heilmann, R. Porton, K. Vercruysse and P.A. Jacobs, Angew. Chem. Int. Ed. Engl. 35 (1996) 180.

    Article  Google Scholar 

  19. A. Sayari, Stud. Surf. Sci. Catal. 102 (1996) 1.

    Google Scholar 

  20. S.T. Gregg and M.M. Tayyab, J. Chem. Soc. Faraday Trans. I 74 (1978) 348.

    Article  Google Scholar 

  21. S. Tatematsu, T. Okuhara and M. Misono, Chem. Lett. (1984) 865.

  22. M. Misono, K. Sakata, Y. Yoneda and K.W. Lee, Proc. 7th Intern. Congr. Catal., Tokyo, 1980, eds. T. Seiyama and K. Tanabe (Kodansha, Tokyo, Elsevier, Amsterdam, 1981) p. 1047.

    Google Scholar 

  23. N. Mizuno and M. Misono, Chem. Lett. (1987) 961.

  24. J.B. Moffat, J. Mol. Catal. 52 (1989) 169; (b) D.B. Taylor, J.B. McMonagle and J.B. Moffat, J. Colloid Interface Sci. 108 (1985) 2789.

    Article  Google Scholar 

  25. K. Inumaru, H. Nakajima, T. Itoh and M. Misono, Chem. Lett. (1996) 559.

  26. T. Itoh, I.-K Song, K. Inumaru and M. Misono, Chem. Lett. (1997) 727.

  27. M. Misono and T. Okuhara, Proc. Mater. Res. Soc. Symp. 368 (1995) 215.

    Google Scholar 

  28. T. Okuhara, T. Nishimura H. Watanabe and M. Misono, J. Mol. Catal. 74 (1992) 247.

    Article  Google Scholar 

  29. T. Okuhara, T. Nishimura, H. Watanabe, K. Na and M. Misono, Acid-Base Catalysis II, eds. H. Hattori, M. Misono and Y. Ono (Kodansha, Tokyo and Elsevier, Amsterdam, 1994) p. 419.

    Google Scholar 

  30. Y. Izumi, M. Ono, M. Ogawa and K. Urabe, Chem. Lett. (1993) 825.

  31. Y. Izumi, M. Ono, M. Kitagawa, M. Yoshida and K. Urabe, Microporous Mater. 5 (1995) 225.

    Google Scholar 

  32. T. Okuhara, M. Kimura and T. Nakato, Appl. Catal. A: General 155 (1997) L9.

    Article  Google Scholar 

  33. M. Kimura, T. Nakato and T. Okuhara, Appl. Catal. A: General 165 (1997) 227.

    Article  Google Scholar 

  34. T. Okuhara, M. Kimura and T. Nakato, Chem. Lett. (1997) 839.

  35. H. Niiyama, Y. Saito and E. Echigoya, Proc. 7th Int. Congr. Catal., Tokyo, 1980, eds. T. Seiyama and K. Tanabe (Kodansha, Tokyo, Elsevier, Amsterdam, 1981) p. 1416.

    Google Scholar 

  36. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic Press, London, 1982).

    Google Scholar 

  37. D. Dollimore and G.R. Heal, J. Colloid Interface Sci. 33 (1970) 508.

    Article  Google Scholar 

  38. G. Horváth and K. Kawazoe, J. Chem. Eng. Jpn. 16 (1983) 470.

    Google Scholar 

  39. K. Na, T. Iizaki, T. Okuhara and M. Misono, J. Mol. Catal. 115 (1997) 449.

    Article  Google Scholar 

  40. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing and K.K. Unger, Pure & Appl. Chem. 66 (1994) 1739.

    Google Scholar 

  41. F. Lefevre, F.X. Liu-Cai and A. Auroux, J. Mater. Chem. 4 (1994) 125.

    Article  Google Scholar 

  42. N. Mizuno, K. Inumaru and M. Misono, Hyomen Kagaku (J. Surf. Sci. Soc. Jpn.) 10 (1989) 175.

    Google Scholar 

  43. T. Nakato, M. Kimura and T. Okuhara, Langmuir 14 (1998) 319.

    Article  Google Scholar 

  44. H. Nakamoto and H. Takahashi, Zeolites 2 (1982) 67.

    Google Scholar 

  45. T. Okuhara, T. Hibi, K. Takahashi, S. Tatematsu and M. Misono, J. Chem. Soc. Chem. Commun. (1984) 697.

  46. T. Okuhara and M. Misono, Dynamic Process on Solid Surface, ed. K. Tamaru (Plenum, New York, 1993) p. 259.

    Google Scholar 

  47. K. Na, T. Okuhara and M. Misono, Chem. Lett. (1993) 1141; J. Chem. Soc. Faraday Trans. 91 (1995) 367.

  48. N. Essayem, G. Coudurier, M. Fournier and J.C. Védrine, Catal. Lett. 34 (1995) 223.

    Google Scholar 

  49. D. Habermacher, N. Essayem and J. Sommer, Preprint of Intern. Symp. on Acid-Base Catalysis III, Rolduc (1997).

  50. K. Na, T. Okuhara and M. Misono, J. Chem. Soc. Chem. Commun. (1993) 1422.

  51. K. Na, T. Okuhara and M. Misono, J. Catal. 170 (1997) 96.

    Article  Google Scholar 

  52. T. Okuhara, T. Nishimura, K. Takahashi and M. Misono, Chem. Lett. (1990) 1201.

  53. T. Nishimura, T. Okuhara and M. Misono, Appl. Catal. 71 (1991) L7.

    Article  Google Scholar 

  54. I.V. Kozhevnikov, A. Sinnema, R.J. Jansen, K. Pamin and H. van Bekkum, Catal. Lett. 30 (1995) 241.

    Google Scholar 

  55. S. Soled, S. Miseo, G.B. McVicker, J.E. Baumgartner, W.E. Gates, A. Gutierrez and J. Paes, Advanced Catalysts and Nanostructured Materials, ed. W.R. Mosen (Academic Press, 1996) p. 435.

  56. T. Okuhara, M. Yamashita, K. Na and M. Misono, Chem. Lett. (1994) 1451.

  57. S. Ohgoshi, J. Kanai and M. Sugimoto, EP 561284, 1993.

  58. N. Essaym, S. Kieger, G. Coudurier and J.C. Védrine, Stud. Surf. Sci. Catal. 101 (1996) 591.

    Google Scholar 

  59. A. Corma, A. Martinez and C. Martinez, J. Catal. 164 (1996) 422.

    Article  Google Scholar 

  60. F. Waller and P.W. Van Scoyoc, Chemtech 17 (1987) 438.

    Google Scholar 

  61. T. Hanaoka, K. Takeuchi, T. Matsuzaki and Y. Sugi, Catal. Today 8 (1990) 123.

    Article  Google Scholar 

  62. M. Kono, Y. Fukuoka, O. Mitsui and H. Ishida, Nippon Kagaku Kaishi (J. Chem. Soc. Jpn.) (1989) 521 (in Japanese); (b) H. Ishida, Y. Fukuoka, O. Mitsui and M. Kono, Stud. Surf. Sci. Catal. 83 (1994) 473.

  63. F. Fajula, R. Ibarra, F. Figueras and C. Gueguen, J. Catal. 89 (1984) 60.

    Article  Google Scholar 

  64. S. Namba, Y. Wakushima, T. Shimizu, H. Masumoto and T. Yashima, Stud. Surf. Sci. Catal. 20 (1985) 205.

    Google Scholar 

  65. S. Namba, N. Hosonuma and T. Yashima, J. Catal. 72 (1981) 16.

    Article  Google Scholar 

  66. K. Segawa, N. Kihara, H. Yamamoto and Y. Kurusu, Proc. 9th Int. Zeolite Conf., 1992(Butterworth-Heinemann, 1993) p. 255.

  67. Y. Izumi, Catal. Today 33 (1997) 371.

    Article  Google Scholar 

  68. Y. Izumi, Catal. Surveys 1 (1997) 17.

    Article  Google Scholar 

  69. M. Storker, P. Hemmersback, J.H. Reader and J.K. Grepstad, Appl. Catal. 25 (1986) 223.

    Article  Google Scholar 

  70. R. Shigeishi, I. Gorforth, I. Harris and J. Dwyer, J. Catal. 130 (1991) 423.

    Article  Google Scholar 

  71. Y. Ono and K. Kanae, J. Chem. Soc. Faraday Trans. 87 (1991) 663.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuhara, T., Nakato, T. Catalysis by porous heteropoly compounds. Catalysis Surveys from Asia 2, 31–44 (1998). https://doi.org/10.1023/A:1019053719634

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019053719634

Navigation