Skip to main content
Log in

Role of plant defence in alfalfa during symbiosis

  • Special Topic Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

During effective symbiosis, rhizobia colonize their hosts, and avoid plant defence mechanisms. To determine whether the host defence responses can be elicited by the symbiotic bacteria, specific markers involved in incompatible pathogenic interactions are required. The available markers of alfalfa defence mechanisms are described and their use in the study of the symbiotic interaction discussed. As defence-related gene expression in roots is not always related to defence mechanisms, other model systems have been established allowing confirmation of an important role of bacterial surface components in alfalfa-Rhizobium meliloti interactions. Nod factors at high concentrations have been shown to elicit defence-like responses in Medicago cell suspensions and roots. Elicitation of defence mechanisms by high levels of Nod factors in Rhizobium-infected roots may be a part of the mechanism by which nodulation is feed-back regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson A.J. 1988 Elicitors, the hypersensitive response and phytoalexins. In Physiology and Biochemistry of Plant-Microbial Interactions eds Keen N.T., Kosuge T. & Walling L.L. pp. 103–110. Rockville: American Society of Plant Physiologists.

    Google Scholar 

  • Antoniw J.F., Ritter C.E., Pierpoint W.S. & van Loon L.C. 1980 Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. Journal of General Virology 47, 79–87.

    Google Scholar 

  • Baker C.J., O'Neill N.R. & Tomerlin J.R. 1989 Accumulation of phenolic compounds in incompatible clone/race interactions of Medicago sativa and Colletotrichum trifolii. Physiological and Molecular Plant Pathology 35, 231–241.

    Google Scholar 

  • Ballance G.M. & Dixon R.A. 1995 Medicago sativa cDNAs encoding chalcone reductase. Plant Physiology 107, 1027–1028.

    Google Scholar 

  • Bauer P., Crespi M.D., Szécsi J., Allison L.A., Schultze M., Ratet P., Kondorosi É. & Kondorosi Á. 1994 Alfalfa Enod12 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion. Plant Physiology 105, 585–592.

    Google Scholar 

  • Baureithel K., Felix G. & Boller T. 1994 Specific, high affinity binding of chitin fragments to tomato cells and membranes. Journal of Biological Chemistry 269, 17931–17938.

    Google Scholar 

  • Biggs D.R. & Shaw G.J. 1980 Wairol, a new coumestan from Medicago sativa. Phytochemistry 19, 2801–2802.

    Google Scholar 

  • Blount J.W., Dixon R.A. & Paiva N. 1992 Stress responses in alfalfa (Medicago sativa L.) XVI. Antifungal activity of medicarpin and its biosynthetic precursors; implication for the genetic manipulation of stress metabolites. Physiological and Molecular Plant Pathology 41, 333–349.

    Google Scholar 

  • Boller T. 1993 Antimicrobial functions of plant hydrolases, chitinase and β1,3-glucanase. In Developments in Plant Pathology vol. 2: Mechanisms of Plant Defense Responses eds Fritig B & Legrand M. pp. 391–400. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Bowles D.J. 1990 Defense-related proteins in higher plants. Annual Review of Biochemistry 59, 873–907.

    Google Scholar 

  • Bradley D.J., Kjellbom P. & Lamb C.J. 1992 Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70, 21–30.

    Google Scholar 

  • Brisson L.F., Tenhaken R. & Lamb C.J. 1994 Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6, 1703–1712.

    Google Scholar 

  • Caetano-Anolles G. & Gresshoff P.M. 1991 Plant genetic control of nodulation. Annual Review of Microbiology 45, 345–382.

    Google Scholar 

  • Carlson R.W., Bhat U.R. & Reuhs B. 1992 Rhizobium lipopolysaccharides; their structures and evidence for their importance in the nitrogen-fixing symbiotic infection of their host legumes. In Plant Biotechnology and Development, ed Gresshoff P.M. pp. 33–44. Boca Raton: CRC Press.

    Google Scholar 

  • Collinge D.B., Kragh K.M., Mikkelsen J.D., Nielsen K.K., Rasmussen U. & Vad K. 1993 Plant chitinases. Plant Journal 3, 31–40.

    Google Scholar 

  • Constabel C.P. & Brisson N. 1995 Stigma- and vascular-specific expression of the PR-10a gene of potato: a novel pattern of expression of a pathogenesis-related gene. Molecular Plant-Microbe Interactions 8, 104–113.

    Google Scholar 

  • Cook D., Dreyer D., Bonnet D., Howell M., Nony E. & VanderBosch K. 1995 Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell 7, 43–55.

    Google Scholar 

  • Corbin D.R., Sauer N. & Lamb C.J. 1987 Differential regulation of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants. Molecular and Cellular Biology 7, 4337–4344.

    Google Scholar 

  • Coronado C., Zuanazzi J.A.S., Sallaud C., Quirion J.C., Esnault R., Husson H.-P., Kondorosi Á. & Ratet P. 1995 Alfalfa root flavonoid production is nitrogen regulated. Plant Physiology 108, 533–542.

    Google Scholar 

  • Crowell D.N., John M.E., Russel D. & Amasino R.M. 1992 Characterization of a stress-induced, developmentally regulated gene family from soybean. Plant Molecular Biology 18, 459–466.

    Google Scholar 

  • Dakora F.D., Joseph C.M. & Phillips D.A. 1993 Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiology 101, 819–824.

    Google Scholar 

  • Dalkin K., Edwards R., Edington B. & Dixon R.A. 1990a Defense responses in alfalfa (Medicago sativa L.) I. Elicitor induction of phenylpropanoid biosynthesis and hydrolytic enzymes in cell suspension cultures. Plant Physiology 92, 440–446.

    Google Scholar 

  • Dalkin K., Jorrin J. & Dixon R.A. 1990b Stress responses in alfalfa: VII. Induction of defense related mRNAs in elicitortreated cell suspension cultures. Physiological and Molecular Plant Pathology 37, 293–307.

    Google Scholar 

  • De Kozak I., El-Turk J., Sallaud C., Breda C., Buffard D., Esnault R. & Kondorosi Á. 1994 Are non-pathogenic bacteria able to induce a defence reaction? In Proceedings of the 1st European Nitrogen Fixation Conference, eds Kiss G.B. & Endre G. p. 334. Szeged: Officina Press.

    Google Scholar 

  • Dewick P.M. & Martin M. 1979 Biosynthesis of pterocarpan, isoflavan and coumestan metabolites of Medicago sativa: chalcone, isoflavone and isoflavanone precursors. Phytochemistry 18, 597–602.

    Google Scholar 

  • Dhawale S., Souciet G. & Kuhn D.N. 1989 Increase of chalcone synthase mRNA in pathogen-inoculated soybeans with racespecific resistance is different in leaves and roots. Plant Physiology 91, 911–916.

    Google Scholar 

  • Dixon R.A. & Harrison M.J. 1990 Activation, structure and organization of genes involved in microbial defense in plants. Advances in Genetics 28, 165–234.

    Google Scholar 

  • Dixon R.A., Harrison M.J. & Lamb C.J. 1994 Early events in the activation of plant defence responses. Annual Review of Phytopathology 32, 479–501.

    Google Scholar 

  • Dixon R.A., Harrison M.J. & Paiva N.L. 1995 The isoflavonoid phytoalexin pathway: From enzymes to genes to transcription factors. Physiologia Plantarum 93, 385–392.

    Google Scholar 

  • Djordjevic M.A., Gabriel D.W. & Rolfe B.G. 1987 Rhizobium. The refined parasite of legumes. Annual Review of Phytopathology 25, 145–168.

    Google Scholar 

  • Doke N. 1983 Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophtora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiological Plant Pathology 23, 311–322.

    Google Scholar 

  • Dumas B., Legrand M., Geoffroy P. & Fritig B. 1988 Purification of tobacco O-methyl-transferases by affinity chromatography and estimation of the rate of synthesis of the enzymes during hypersensitive reaction to virus infection. Planta 176, 36–41.

    Google Scholar 

  • Ebel J. & Grisebach H. 1988 Defense strategies of soybean against the fungus Phytophtora megasperma f.sp. glycinea: a molecular analysis. Trends in Biochemical Sciences 13, 23–27.

    Google Scholar 

  • Esnault R., Buffard D., Breda C., Sallaud C., El-Turk J. & Kondorosi Á. 1993a Pathological and molecular characterizations of alfalfa interactions with compatible and incompatible bacteria, Xanthomonas campestris pv alfalfae and Pseudomonas syringae pv pisi. Molecular Plant-Microbe Interactions 6, 655–664.

    Google Scholar 

  • Esnault R., El-Turk J., Asemota O., Sallaud C., Breda C., Buffard D. & Kondorosi Á. 1993b Structure and expression of several peroxidase cDNAs from Medicago sativa. In Plant peroxidases: Biochemistry and Physiology eds Welinder K.G. Rasmussen S.K., Penel C. & Greppin H., pp. 361–368, Geneva: University of Geneva.

    Google Scholar 

  • Estabrook E.M. & Sengupta-Gopalan C. 1991 Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development. Plant Cell 3, 299–308.

    Google Scholar 

  • Fahrendorf T. & Dixon R.A. 1993 Stress responses in alfalfa (Medicago sativa L.) XVIII. Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Archives of Biochemistry and Biophysics 305, 509–515.

    Google Scholar 

  • Fry S.C. 1986 Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annual Review of Plant Physiology 37, 165–186.

    Google Scholar 

  • Fry S.C. 1987 Formation of isodityrosine by peroxidase isozymes. Journal of Experimental Botany 38, 853–862.

    Google Scholar 

  • Gowri G., Bugos R.C., Campbell W.H., Maxwell C.A. & Dixon R.A. 1991a Stress responses in alfalfa (Medicago sativa L.) X. Molecular cloning and expression of S-adenosyl-L methionine: caffeic acid 3-O-methyltransferase, a key enzyme of lignin biosynthesis. Plant Physiology 97, 7–14.

    Google Scholar 

  • Gowri G., Paiva N. & Dixon R.A. 1991b Stress responses in alfalfa (Medicago sativa L.) 12. Sequence analysis of phenylalanine ammonia-lyase (PAL) cDNA clones and appearance of PAL transcripts in elicitor-treated cell cultures and developing plants. Plant Molecular Biology 17, 415–429.

    Google Scholar 

  • Grand C., Sarni F. & Lamb C.J. 1987 Rapid induction by fungal elicitor of the synthesis of cinnamyl alcohol dehydrogenase, a specific enzyme of lignin synthesis. European Journal of Biochemistry 169, 73–77.

    Google Scholar 

  • Grosskopf E., Cam Ha D.T., Wingender R., Röhrig H., Szecsi J., Kondorosi É., Schell J. & Kondorosi Á. 1993 Enhanced levels of chalcone synthase in alfalfa nodules induced by a Fix- mutant of Rhizobium meliloti. Molecular Plant-Microbe Interactions 6, 173–181.

    Google Scholar 

  • Guo L., Dixon R.A. & Paiva N.L. 1994 Conversion of vestitone to medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two independent enzymes. Journal of Biological Chemistry 269, 22372–22378.

    Google Scholar 

  • Gustine D.L. & Moyer B.G. 1982 Retention of phytoalexin regulation in legume callus cultures. Plant Cell, Tissue and Organ Culture 1, 255–263.

    Google Scholar 

  • Habereder H., Schröder G. & Ebel J. 1989 Rapid induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs during fungus infection of soybean (Glycine max L.) roots or elicitor treatment of soybean cell cultures at the onset of phytoalexin synthesis. Planta 177, 58–65.

    Google Scholar 

  • Harrison M.J., Dixon R.A. 1993 Isoflavonoid accumulation and expression of defence gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Molecular Plant-Microbe Interactions 6, 643–654.

    Google Scholar 

  • Harrison M.J. & Dixon R.A. 1994 Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant Journal 6, 9–20.

    Google Scholar 

  • Heller W. & Forkmann G. 1988 Biosynthesis. In The Flavonoids: Advances in Research Since 1980, ed Harborne J.B. pp. 399–425. London: Chapman & Hall.

    Google Scholar 

  • Ingham J.L. 1979 Isoflavonoid phytoalexins of the genus Medicago. Biochemical Systematics and Ecology 7, 29–34.

    Google Scholar 

  • Ingham J.L. & Millar R.L. 1973 Sativan: an induced isoflavan from the leaves of Medicago sativa L. Nature 242, 125–126.

    Google Scholar 

  • Jacobs M. & Rubery P.H. 1988 Naturally occurring auxin transport regulators. Science 241, 346–349.

    Google Scholar 

  • Jakobek J.L. & Lindgren P.B. 1993 Generalized induction of defence responses in bean is not correlated with the induction of the hypersensitive reaction. Plant Cell 5, 49–56.

    Google Scholar 

  • Jorrin J. & Dixon R.A. 1990 Stress responses in alfalfa: II. Purification, characterization and induction of phenylalanine ammonia-lyase isoforms from elicitor-treated cell suspension cultures. Plant Physiology 92, 447–455.

    Google Scholar 

  • Junghans H., Dalkin K. & Dixon R.A. 1993 Stress responses in alfalfa (Medicago sativa L.) 15. Characterization and expression patterns of members of a subset of the chalcone synthase multigene family. Plant Molecular Biology 22, 239–253.

    Google Scholar 

  • Keen N.T. 1992 The molecular biology of disease resistance. Plant Molecular Biology 19, 109–122.

    Google Scholar 

  • Klement Z. 1982. Hypersensitivity. In Phytopathogenic Prokaryotes, vol. 2, eds Mount M.S. & Lacy G.H. pp. 437–445. New York: Academic Press.

    Google Scholar 

  • Knight M.E., Halpin C. & Schuch W. 1992 Identification and characterisation of cDNA clones encoding cinnamyl alcohol dehydrogenase from tobacco. Plant Molecular Biology 19, 793–801.

    Google Scholar 

  • Kombrink E. & Hahlbrock K. 1986 Responses of cultured parsley cells to elicitors from phytopathogenic fungi. Plant Physiology 81, 216–221.

    Google Scholar 

  • Lagrimini L.M., Burkart W., Moyer M. & Rothstein S. 1987 Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco. Proceedings of the National Academy of Sciences of the United States of America 84, 7542–7546.

    Google Scholar 

  • Lamb C.J. 1994 Plant disease resistance genes in signal perception and transduction. Cell 76, 419–422.

    Google Scholar 

  • LaRosa P.C., Chen Z., Nelson D.E., Singh N.K., Hasegawa P.M. & Bressan R.A. 1992 Osmotin gene expression is posttranscriptionally regulated. Plant Physiology 100, 409–415.

    Google Scholar 

  • Latunde-Dada A.O., Dixon R.A. & Lucas J.A. 1987 Induction of phytoalexin biosynthetic enzymes in resistant and susceptible lucerne callus lines infected with Verticillum albo-atrum. Physiological and Molecular Plant Pathology 31, 15–23.

    Google Scholar 

  • Latunde-Dada A.O. & Lucas J.A. 1985 Involvement of the phytoalexin medicarpin in the differential response of callus lines of lucerne (Medicago sativa) to infection by Verticillum albo-atrum. Physiological Plant Pathology 26, 31–42.

    Google Scholar 

  • Lawson C.G.R., Djordjevic M.A., Weinman J.J. & Rolfe B.G. 1994 Rhizobium inoculation and physical wounding result in the rapid induction of the same chalcone synthase copy in Trifolium subterraneum. Molecular Plant-Microbe Interactions 7, 498–507.

    Google Scholar 

  • Leigh J.A. & Coplin D.L. 1992 Exopolysaccharides in plantbacterial interactions. Annual Review of Microbiology 46, 307–346.

    Google Scholar 

  • Leigh J.A., Signer E.R. & Walker G.C. 1985 Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proceedings of the National Academy of Sciences of the United States of America 82, 6231–6235.

    Google Scholar 

  • Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Promé J.C. & Dénarié J. 1990 Symbiotic host-specificity of Rhizobium meliloti is determined by a sulfated and acylated glucosamine oligosaccharide signal. Nature 344, 781–784.

    Google Scholar 

  • Lewis N.G. & Yamamoto E. 1990 Lignin: occurrence, biogenesis and biodegradation. Annual Review of Plant Physiology and Plant Molecular Biology 41, 455–496.

    Google Scholar 

  • Liang X., Dron M., Schmid J., Dixon R.A. & Lamb C.J. 1989 Developmental and environmental regulation of a phenylalanine ammonialyase-β-glucuronidase gene fusion in transgenic tobacco plants. Proceedings of the National Academy of Sciences of the United States of America. 86, 9284–9288.

    Google Scholar 

  • Long S.R. & Stakawicz B.J. 1993 Prokaryotic plant parasites. Cell 73, 921–935.

    Google Scholar 

  • Maxwell C.A., Hartwig U.A., Joseph C.M. & Phillips D.A. 1989 A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiology 91, 842–847.

    Google Scholar 

  • Maxwell C.A. & Phillips D.A. 1990 Concurrent synthesis and release of nod-gene inducing flavonoids from alfalfa roots. Plant Physiology 93, 1552–1558.

    Google Scholar 

  • McKhann H.I., Fang Y., Paiva N.C., Dixon R.A. & Hirsch A.M. 1994 Chalcone synthase and chalcone isomerase are expressed in alfalfa roots upon Rhizobium inoculation. In Proceedings of the 1st European Nitrogen Fixation Conference, eds Kiss G.B. & Endre G. p. 332. Szeged: Officina Press.

    Google Scholar 

  • McKhann H.I. & Hirsch A.M. 1994 Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): highest transcript levels occur in young roots and root tips. Plant Molecular Biology 24, 767–777.

    Google Scholar 

  • Meier I., Hahlbrock K. & Somssich I.E. 1991 Elicitor-inducible and constitutive in vivo DNA footprints indicate novel cis-acting elements in the promoter of a parsley gene encoding pathogenesis-related protein 1. Plant Cell 3, 309–315.

    Google Scholar 

  • Meier B.M., Shaw N. & Slusarenko A.J. 1993 Spatial and temporal accumulation of defense gene transcripts in bean (Phaseolus vulgaris) leaves in relation to bacteria-induced hypersensitive cell death. Molecular Plant-Microbe Interactions 6, 453–466.

    Google Scholar 

  • Mellor R.B. & Collinge D.B. 1995 A simple model based on known plant defence reactions is sufficient to explain most aspects of nodulation. Journal of Experimental Botany 46, 1–18.

    Google Scholar 

  • Moerschbacher B.M. 1992. Plant peroxidases: involvement in response to pathogens. In Plant Peroxidases: 1980–1990 eds Penel C., Gaspar T. & Greppin H.P. pp. 91–99. Geneva: University of Geneva.

    Google Scholar 

  • Mulligan J.T. & Long S.R. 1989 A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. Genetics 122, 7–18.

    Google Scholar 

  • Mylona P., Moerman M., Yang W.-C., Gloudemans T., van de Kerckhove J., van Kammen A., Bisseling T. & Franssen H.J. 1994 The root epidermis-specific pea gene RH2 is homologous to a pathogenesis-related gene. Plant Molecular Biology 26, 39–50.

    Google Scholar 

  • Niehaus K., Kapp D. & Pühler A. 1993 Plant defence and delayed infection of alfalfa pseudonodules induced by an expolysaccharide (EPS I)-deficient Rhizobium meliloti mutant. Planta 190, 415–425.

    Google Scholar 

  • Novacky A., Acedo G. & Goodman R.N. 1973 Prevention of bacterially induced hyper-sensitive reaction by living bacteria. Physiological Plant Pathology 3, 133–136.

    Google Scholar 

  • O'Neill N.R. & Saunders J.A. 1994 Compatible and incompatible responses in alfalfa cotyledons to races 1 and 2 of Colletotrichum trifolii. Phytopathology 84, 283–287.

    Google Scholar 

  • Olah A.F. & Sherwood R.T. 1970 Flavones, isoflavones and coumestans in alfalfa infected by Ascochyta imperfecta. Phytopathology 61, 65–69.

    Google Scholar 

  • Oommen A., Dixon R.A. & Paiva N.L. 1994 The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and hetrologous transgenic plants. Plant Cell 6, 1789–1803.

    Google Scholar 

  • Paiva N.L., Edwards R., Sun Y., Hrazdina G. & Dixon R.A. 1991 Stress responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Molecular Biology 17, 653–667.

    Google Scholar 

  • Parker J.E., Hahlbrock K. & Scheel D. 1988 Different cell-wall components from Phytophtora megasperma f. sp. glycinea elicit phytoalexin production in soybean and parsley. Planta 176, 75–82.

    Google Scholar 

  • Perotto S., Brewin N.J. & Kannenberg E.L. 1994 Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of Rhizobium leguminosarum strain 3841. Molecular Plant-Microbe Interactions 7, 99–112.

    Google Scholar 

  • Peters N.K. & Long S.R. 1988 Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiology 88, 396–400.

    Google Scholar 

  • Peters N.K. & Verma D.P.S. 1990 Phenolic compounds as regulators of gene expression in plant-microbe interactions. Molecular Plant-Microbe Interactions 3, 4–8.

    Google Scholar 

  • Petrovics G., Putnoky P., Rheus B., Kim J., Thorp T.A., Noel K.D., Carlson R.W. & Kondorosi Á. 1993 The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development. Molecular Microbiology 8, 1083–1094.

    Google Scholar 

  • Pichon M., Journet E.P., Dedieu A., de Billy F., Truchet G. & Barker D.G. 1992 Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 4, 1199–1211.

    Google Scholar 

  • Recourt K., Schripsema J., Kijne J.W., van Brussel A.A.N. & Lugtenberg B.J.J. 1991 Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Molecular Biology 16, 841–852.

    Google Scholar 

  • Rheus B.L., Carlson R.W. & Kim J.S. 1993 Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-D-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli. Journal of Bacteriology 175, 3570–3580.

    Google Scholar 

  • Roche P., Debellé F., Maillet F., Lerouge P., Faucher C., Truchet G., Denarié J. & Promé J.C. 1991 Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipooligosaccharide signals. Cell 67, 1131–1143.

    Google Scholar 

  • Sahai A.S. & Manocha M.S. 1993 Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiology Reviews 11, 317–338.

    Google Scholar 

  • Sallaud C., El-Turk J., Bigarré L., Sevin H., Welle R. & Esnault R. 1995a Nucleotide sequences of three chalcone reductase genes from alfalfa. Plant Physiology 108, 869–870.

    Google Scholar 

  • Sallaud C., El-Turk J., Breda C., Buffard D., de Kozak I., Esnault R. & Kondorosi Á. 1995b Differential expression of cDNA coding for chalcone reductase, a key enzyme of the 5-deoxyflavonoid pathway, under various stress conditions in Medicago sativa. Plant Science 109, 179–190.

    Google Scholar 

  • Salzwedel J.L. & Dazzo F.B. 1993 pSym nod gene influence on elicitation of peroxidase activity from white clover and pea roots by rhizobia and their cell-free supernatants. Molecular Plant-Microbe Interactions 6, 127–134.

    Google Scholar 

  • Savouré A., Magyar Z., Pierre M., Brown S., Schultze M., Dudits D. Kondorosi Á. & Kondorosi É. 1994 Activation of the cell machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions. EMBO Journal 13, 1093–1102.

    Google Scholar 

  • Schmid J., Doerner P.W., Clouse S.D., Dixon R.A. & Lamb C.J. 1990 Developmental and environmental regulation of bean chalcone synthase promoter in transgenic tobacco. Plant Cell 2, 619–631.

    Google Scholar 

  • Schmidt P.E., Parniske M. & Werner D. 1992 Production of the phytoalexin glyceollin I by soybean roots in response to symbiotic and pathogenic infection. Botanica acta 105, 18–25.

    Google Scholar 

  • Schultze M., Kondorosi É., Ratet P., Buiré M. & Kondorosi Á. 1994 Cell and molecular biology of Rhizobium-plant interactions. International Review of Cytology 156, 1–75.

    Google Scholar 

  • Sheng J., D'Ovidio R. & Mehdy M.C. 1991 Negative and positive regulation of a novel proline-rich protein mRNA by fungal elicitor and wounding. Plant Journal 3, 345–354.

    Google Scholar 

  • Shufflebottom D., Edwards K., Schuch W. & Bevan M. 1993 Transcription of two members of a gene family encoding a phenylalanine ammonia-lyase leads to remarkably different cell specificities and induction patterns. Plant Journal 3, 835–845.

    Google Scholar 

  • Smith D.G., McInnes A.G., Higgins V.J. & Millar R.L. 1971 Nature of the phytoalexin produced by alfalfa in response to fungal infection. Physiological Plant Pathology 1, 41–44.

    Google Scholar 

  • Staehelin C., Granado J., Müller J., Wiemken A., Mellor R.B., Felix G., Regenas M., Broughton W.J. & Boller T. 1994a Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases. Proceedings of the National Academy of Sciences of the United States of America 91, 2196–2200.

    Google Scholar 

  • Staehelin C., Müller J., Mellor R.B., Wiemken A. & Boller T. 1992 Chitinase and peroxidase in effective (Fix+) and ineffective (Fix-) soybean nodules. Planta 187, 295–300.

    Google Scholar 

  • Staehelin C., Schultze M., Kondorosi É., Mellor R.B., Boller T. & Kondorosi Á. 1994b Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant Journal 5, 319–330.

    Google Scholar 

  • Staehelin C., Schultze M., Kondorosi É. & Kondorosi Á. 1995 Lipo-oligosaccharide nodulation signals from Rhizobium meliloti induce their rapid degradation by the host plant alfalfa. Plant Physiology 108, 1607–1614.

    Google Scholar 

  • Steffens M., Ettl F., Kranz D. & Kindl H. 1989 Vanadate mimics effects of fungal cell wall in eliciting gene activation in plant cell cultures. Planta 177, 160–168.

    Google Scholar 

  • Stokkermans T.J.W., Sanjuan J., Ruan X., Stacey G. & Peters N.K., 1992 Bradyrhizobium japonicum rhizobitoxine mutants with altered host-range on Rj4 soybeans. Molecular Plant-Microbe Interactions 5, 504–512.

    Google Scholar 

  • Sutherland M.W. 1991 The generation of oxygen radical during host plant response to infection. Physiological and Molecular Plant Pathology 39, 79–93.

    Google Scholar 

  • Templeton M.D. & Lamb C.J. 1988 Elicitors and defence gene activation. Plant, Cell and Environment 11, 395–401.

    Google Scholar 

  • Tiller S.A., Parry A.D. & Edwards R. 1994 Changes in the accumulation of flavonoid and isoflavonoid conjugates associated with plant age and nodulation in alfalfa (Medicago sativa). Physiologia Plantarum 91, 27–36.

    Google Scholar 

  • Van Doorselaere J., Baucher M., Feuillet C., Boudet A.M. van Montagu M. & Inzé D. 1995 Isolation of cinnamyl alcohol dehydrogenase cDNAs from two important economic species: alfalfa and poplar. Demonstration of high homology of the gene within the angiosperms. Plant Physiology and Biochemistry 33, 105–109.

    Google Scholar 

  • Van Loon L.C., Pierpoint W.S., Boller T. and Conejero V. 1994 Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biology Reporter 12, 245–264.

    Google Scholar 

  • Van de Rhee M.D. & Bol J.F. 1993 Induction of the tobacco PR-1a gene by virus infection and salicylate treatment involves an interaction between multiple regulatory elements. Plant Journal 3, 71–82.

    Google Scholar 

  • Vance C.P., Kirk T.K. & Sherwood R.T. 1980 Lignification as a mechanism of disease resistance. Annual Review of Phytopathology 18, 259–288.

    Google Scholar 

  • Vance C.P. 1983 Rhizobium infection and nodulation: A beneficial plant disease? Review of Microbiology 37, 399–424.

    Google Scholar 

  • Varner J.E. & Lin L.S. 1989 Plant cell wall architecture. Cell 56, 231–239.

    Google Scholar 

  • Vasse J., de Billy F. & Truchet G. 1993 Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersesitive reaction. Plant Journal 4, 555–566.

    Google Scholar 

  • Warner S.A.J., Gill A. & Draper J. 1994 The developmental expression of the asparagus intracellular PR protein (AoPRI) gene correlates with sites of phenylpropanoid biosynthesis. Plant Journal 6, 31–43.

    Google Scholar 

  • Welle R. & Grisebach H. 1988 Isolation of a novel NADPH-dependent reductase which coacts with chalcone synthase in the biosynthesis of 6′-deoxychalcone. FEBS Letters 236, 221–225.

    Google Scholar 

  • Werner D., Mellor R.B., Hahn M.G. & Grisebach H. 1985 soybean root response to symbiotic infection. Glyceollin I accumulation in an ineffective type of soybean nodules with an early loss of the peribacteroid membrane. Zeitschrift für Naturforschung 40c, 179–181.

    Google Scholar 

  • Wingender R., Röhrig H., Höricke C., Wing D. & Schell J. 1989 Differential regulation of soybean chalcone synthase genes in plant defence, symbiosis and upon environmental stimuli. Molecular and General Genetics 218, 315–322.

    Google Scholar 

  • Yang W.C., Canter Cremers H.C.J., Hogendijk P., Katinakis P., Wijffelman C.A., Franssen H., van Kammen A. & Bisseling T. 1992 In-situ localization of chalcone synthase mRNA in pea root nodule development. Plant Journal 2, 143–151.

    Google Scholar 

  • Zhang S. & Mehdy M.C. 1994 Binding of a 50 KDa protein to a U-rich sequence in a mRNA encoding a proline-rich protein that is destabilized by fungal elicitor. Plant cell 6, 135–145.

    Google Scholar 

Download references

Authors

Additional information

The authors are with the Institut des Sciences Végétales, CNRS, F-91198 Gif-sur-Yvette cédex, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buffard, D., Esnault, R. & Kondorosi, Á. Role of plant defence in alfalfa during symbiosis. World Journal of Microbiology & Biotechnology 12, 175–188 (1996). https://doi.org/10.1007/BF00364682

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364682

Key words

Navigation