Skip to main content

Advertisement

Log in

The Cryptococcus neoformans genome sequencing project

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Cryptococcus neoformans is a basidiomycete that can cause life-threatening meningoencephalitis in patients with and without impaired immune function. Cryptococcosis is usually an opportunistic infection in patients with compromised immunity as a consequence of HIV-1 infection, steroid administration, cancer chemotherapy, sarcoidosis, diabetes, or inherited immune system defects. This pathogenic yeast has a defined sexual cycle, which allows classical genetic analysis. Molecular biology approaches, including transformation and gene disruption by homologous recombination, and animal models for studies of virulence are both well developed. Recently an international consortium convened to begin the C. neoformans genome sequencing project, and we review here background and arguments for this project. We also discuss the importance of this project to the biology and virulence of this organism in particular, and to virulence in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams MD, Celniker SE, Holt RA, et al. The genome sequence of Drosophila melanogaster. Science 2000; 287: 2185–2195.

    Article  PubMed  Google Scholar 

  2. Blattner FR, Plunkett GR, Bloch CA et al. The complete genome sequence of Escherichia coli K-12. Science 1997; 277: 1453–74.

    Article  PubMed  CAS  Google Scholar 

  3. Mewes HW, Albermann K, Bahr M et al. Overview of the yeast genome. Nature 1997; 387: 7–65.

    Article  PubMed  Google Scholar 

  4. The C. elegans sequencing consortium: Genome sequence of the nematode C. elegans: a platform for investigating biology. The C. elegans Sequencing Consortium. Science 1998; 282: 2012–2018.

    Google Scholar 

  5. Kwon-Chung KJ. A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 1975; 67: 1197–1200.

    PubMed  CAS  Google Scholar 

  6. Kwon-Chung KJ. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 1976; 68: 821–833.

    PubMed  CAS  Google Scholar 

  7. Alspaugh JA, Davidson RC, Heitman J. Morphogenesis of Cryptococcus neoformans. In: Ernst JF, Schmidt A, eds. Dimorphism in Human Pathogenic and Apathogenic Yeasts, vol 5. Basel, Karger, Switzerland: Contrib Microbiol 2000; 217–238.

    Google Scholar 

  8. Wickes BL, Mayorga ME, Edman U, Edman JC. Dimorphism and haploid fruiting in Cryptococcus neoformans: Association with the β-mating type. Proc Natl Acad Sci USA 1996; 93: 7327–7331.

    Article  PubMed  CAS  Google Scholar 

  9. Wang P, Perfect JR, Heitman J. The G-protein β subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol Cell Biol 2000; 20: 352–362.

    Article  PubMed  Google Scholar 

  10. Kwon-Chung KJ, Rhodes JC. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun 1986; 51: 218–223.

    PubMed  CAS  Google Scholar 

  11. Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR. Effect of the laccase gene, CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 1996; 184: 377–386.

    Article  PubMed  CAS  Google Scholar 

  12. Wang Y, Casadevall A. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen-and oxygenderived oxidants. Infect Immun 1994; 62: 3004–3007.

    PubMed  CAS  Google Scholar 

  13. Nosanchuk JD, Rosas AL, Casadevall A. The antibody response to fungal melanin in mice. J Immunol 1998; 160: 6026–6031.

    PubMed  CAS  Google Scholar 

  14. Nosanchuk JD, Valadon P, Feldmesser M, Casadevall A. Melanization of Cryptococcus neoformans in murine infection. Mol Cell Biol 1999; 19: 745–750.

    PubMed  CAS  Google Scholar 

  15. Chang YC, Kwon-Chung KJ. Complementation of a capsuledeficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol 1994; 14: 4912–4919.

    PubMed  CAS  Google Scholar 

  16. Hamilton AJ, Goodley J. Virulence factors of Cryptococcus neoformans. Curr Top Med Mycol 1996; 7: 19–42.

    PubMed  CAS  Google Scholar 

  17. Edman JC, Kwon-Chung KJ. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol 1990; 10: 4538–4544.

    PubMed  CAS  Google Scholar 

  18. Toffaletti DL, Rude TH, Johnston SA, Durack DT, Perfect JR. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 1993; 175: 1405–1411.

    PubMed  CAS  Google Scholar 

  19. Lodge JK, Jackson-Machelski E, Toffaletti DL, Perfect JR, Gordon JI. Targeted gene replacement demonstrates that myristoyl-CoA:protein N-Myristoyltransferase is essential for viability of Cryptococcus neoformans. Proc Natl Acad Sci USA 1994; 91: 12008–12012.

    Article  PubMed  CAS  Google Scholar 

  20. Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 1997; 16: 2576–2589.

    Article  PubMed  CAS  Google Scholar 

  21. Kwon-Chung KJ, Edman JC, Wickes BL. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun 1992; 60: 602–605.

    PubMed  CAS  Google Scholar 

  22. Heitman J, Allen B, Alspaugh JA, Kwon-Chung KJ. On the origins of the congenic MATα and MATa strains of the pathogenic yeast Cryptococcus neoformans. Fungal Genet Biol 1999; 28: 1–5.

    Article  PubMed  CAS  Google Scholar 

  23. Davidson RC, Cruz MC, Sia RAL, Allen BM, Alspaugh JA, Heitman J. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol 2000; 29: 38–48.

    Article  PubMed  CAS  Google Scholar 

  24. Del Poeta M, Toffaletti DL, Rude TH, Dykstra CC, Heitman J, Perfect JR. Topoisomerase I is essential in Cryptococcus neoformans: role in pathobiology and as an antifungal target. Genetics 1999; 152: 167–178.

    PubMed  CAS  Google Scholar 

  25. Thompson JR, Douglas CM, Li W, et al. A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function. J Bacteriol 1999; 181: 444–453.

    PubMed  CAS  Google Scholar 

  26. Perfect JR, Lang SDR, Durack DT. Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol 1980; 101: 177–194.

    PubMed  CAS  Google Scholar 

  27. Goldman D, Cho Y, Zhao M, Casadevall A, Lee SC. Expression of inducible nitric oxide synthase in rat pulmonary Cryptococcus neoformans granulomas. Am J Pathol 1996; 148: 1275–1282.

    PubMed  CAS  Google Scholar 

  28. Perfect JR, Toffaletti DL, Rude TH. The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun 1993; 61: 4446–4451.

    PubMed  CAS  Google Scholar 

  29. Alspaugh JA, Perfect JR, Heitman J. Cryptococcus neoformans mating and virulence are regulated by the G-protein αsubunit GPA1 and cAMP. Genes & Dev 1997; 11: 3206–3217.

    CAS  Google Scholar 

  30. Cruz MC, Sia RAL, Olson M, Cox GM, Heitman J. Comparison of the roles of calcineurin in physiology and virulence in serotype D and serotype A strains of Cryptococcus neoformans. Infect Immun 2000; 68: 982-985.

    Article  PubMed  CAS  Google Scholar 

  31. Falkow S. Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis 1988; 10: S274–276.

    PubMed  Google Scholar 

  32. Kwon-Chung KJ, Bennett JE. Distribution of α and a mating types of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol 1978; 108: 337–340.

    PubMed  CAS  Google Scholar 

  33. Halliday CL, Bui T, Krockenberger M, Malik R, Ellis DH, Carter DA. Presence of alpha and a mating types in environmental and clinical collections of Cryptococcus neoformans var. gattii strains from Australia. J Clin Microbiol 1999; 37: 2920–2926.

    PubMed  CAS  Google Scholar 

  34. Sukroongreung S, Kitiniyom K, Nilakul C, Tantimavanich S. Pathogenicity of basidiospores of Filobasidiella neoformans var. neoformans. Medical Mycology 1998; 36: 419–424.

    Article  PubMed  CAS  Google Scholar 

  35. Moore TDE, Edman JC. The α-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 1993; 13: 1962–1970.

    PubMed  CAS  Google Scholar 

  36. Wickes BL, Edman U, Edman JC. The Cryptococcus neoformans STE12α gene: a putative Saccharomyces cerevisiae STE12 homologue that is mating type specific. Mol Microbiol 1997; 26: 951–960.

    Article  PubMed  CAS  Google Scholar 

  37. Yue C, Cavallo LM, Alspaugh JA, et al. The STE12α homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. Genetics 1999; 153: 1601–1615.

    PubMed  CAS  Google Scholar 

  38. Chang YC, Wickes BL, Miller GF, Penoyer LA, Kwon-Chung KJ. Cryptococcus neoformans STE12α regulates virulence but is not essential for mating. J Exp Med 2000; 191: 871–882.

    Article  PubMed  CAS  Google Scholar 

  39. Wang P, Heitman J. Signal transduction cascades regulating mating, filamentation, and virulence in Cryptococcus neoformans. Curr Opinion Microbiol 1999; 2: 358–362.

    Article  CAS  Google Scholar 

  40. Alspaugh JA, Perfect JR, Heitman J. Signal transduction pathways regulating differentiation and pathogenicity of Cryptococcus neoformans. Fungal Genet Biol 1998; 25: 1–14.

    Article  PubMed  CAS  Google Scholar 

  41. Goldman DL, Lee SC, Mednick AJ, Montella L, Casadevall A. Persistent Cryptococcus neoformans pulmonary infection in the rat is associated with intracellular parasitism, decreased inducible nitric oxide synthase expression, and altered antibody responsiveness to Cryptococcal polysaccharide. Infect Immun 2000; 68: 832–8.

    Article  PubMed  CAS  Google Scholar 

  42. Granger DL, Perfect JR, Durack DT. Virulence of Cryptococcus neoformans: regulation of capsule synthesis by carbon dioxide. J Clin Invest 1985; 76: 508–516.

    Article  PubMed  CAS  Google Scholar 

  43. Vartivarian SE, Anaissie EJ, Cowart RE, Sprigg HA, Tingler MJ, Jacobson ES. Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis 1993; 167: 186–190.

    PubMed  CAS  Google Scholar 

  44. Vietri NJ, Marrero R, Hoover TA, Welkos SL. Identification and characterization of a trans-activator involved in the regulation of encapsulation by Bacillus anthracis. Gene 1995; 152: 1–9.

    Article  PubMed  CAS  Google Scholar 

  45. Franzot SP, Mukherjee J, Cherniak R, Chen LC, Hamdan JS, Casadevall A. Microevolution of a standard strain of Cryptococcus neoformans resulting in differences in virulence and other phenotypes. Infect Immun 1998; 66: 89–97.

    PubMed  CAS  Google Scholar 

  46. Goldman DL, Fries BC, Franzot SP, Montella L, Casadevall A. Phenotypic switching in the human pathogenic fungus Cryptococcus neoformans is associated with changes in virulence and pulmonary inflammatory response in rodents. Proc Natl Acad Sci USA 1998; 95:14967–14972.

    Article  PubMed  CAS  Google Scholar 

  47. Cruz MC, Cavallo LM, Görlach JM, et al. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol 1999; 19: 4101–4112.

    PubMed  CAS  Google Scholar 

  48. Edman JC. Isolation of telomerelike sequences from Cryptococcus neoformans and their use in high-efficiency transformation. Mol Cell Biol 1992; 12: 2777–2783.

    PubMed  CAS  Google Scholar 

  49. Kwon-Chung KJ. A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 1976; 68: 943–946.

    PubMed  CAS  Google Scholar 

  50. Meyer W, Marszewska K, Amirmostofian M et al. Molecular typing of global isolates of Cryptococcus neoformans var. neoformans by polymerase chain reaction fingerprinting and randomly amplified polymorphic DNA - a pilot study to standardize techniques on which to base a detailed epidemiological survey. Electrophoresis 1999; 20: 1790–1799.

    Article  PubMed  CAS  Google Scholar 

  51. Franzot SP, Salkin IF, Casadevall A. Cryptococcus neoformans var. grubii: Separate varietal status for Cryptococcus neoformans serotype A isolates. J Clin Microbiol 1999; 37: 838–840.

    PubMed  CAS  Google Scholar 

  52. Franzot SP, Hamdan JS, Currie BP, Casadevall A. Molecular epidemiology of Cryptococcus neoformans in Brazil and the United States: evidence for both local genetic differences and a global clonal population structure. J Clin Microbiol 1997; 35: 2243–2251.

    PubMed  CAS  Google Scholar 

  53. Buchanan KL, Murphy JW. What makes Cryptococcus neoformans a pathogen? Emerg Infect Dis 1998; 4: 71–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heitman, J., Casadevall, A., Lodge, J.K. et al. The Cryptococcus neoformans genome sequencing project. Mycopathologia 148, 1–7 (1999). https://doi.org/10.1023/A:1007136602930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007136602930

Navigation